EQUIVALENCE OF CERTAIN ALTERNATING DIRECTION AND LOCALLY ONE-DIMENSIONAL DIFFERENCE METHODS

被引:13
作者
GOURLAY, AR
MITCHELL, AR
机构
关键词
D O I
10.1137/0706004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that partial difference methods arising from certain classes of parabolic, elliptic and hyperbolic equations may be solved by splittings of locally one-dimensional (LOD) nature; they may be regarded as alternative to normal alternating direction iterative (ADI) methods of solving factorizable partial difference schemes.
引用
收藏
页码:37 / +
相关论文
共 12 条
[1]  
DYAKONOV EG, 1962, USSR COMP MATH MATH, V2, P55
[2]   SOME COMPUTATIONAL RESULTS OF AN IMPROVED ADI METHOD FOR DIRICHLET PROBLEM [J].
FAIRWEAT.G ;
MITCHELL, AR .
COMPUTER JOURNAL, 1966, 9 (03) :298-&
[3]  
Fairweather G., 1967, SIAM J NUMER ANAL, V4, P163
[4]   A CLASSIFICATION OF SPLIT DIFFERENCE METHODS FOR HYPERBOLIC EQUATIONS IN SEVERAL SPACE DIMENSIONS [J].
GOURLAY, AR ;
MITCHELL, AR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1969, 6 (01) :62-&
[6]  
HUBBARD BE, 1965, <, V2, P448
[7]  
KELLOGG RB, 1963, J SOC IND APPL MATH, V2, P976
[8]  
Lees M, 1961, NUMER MATH, V3, P398, DOI 10.1007/BF01386038
[9]  
Samarskii A.A., 1963, ZH VYCH MAT MAT FIZ, V3, P431
[10]  
Samarskii A.A., 1963, COMP MATH MATH PHYS+, V2, P894, DOI [10.1016/0041-5553(63)90504-4, DOI 10.1016/0041-5553(63)90504-4]