Homogenisation of a sheared unit cell of textile composites FEA and approximate inclusion model

被引:14
作者
Lomov, Stepan V. [1 ]
Bernal, Enrique [2 ]
Ivanov, Dmitry S. [1 ,3 ]
Kondratiev, Sergey V. [1 ]
Verpoest, Ignaas [1 ]
机构
[1] Katholieke Univ Leuven, Dept Met & Mat Sci, Kasteelpark Arenberg,44, B-3001 Leuven, Belgium
[2] Univ Zaragoza, Fac Ciencias, Zaragoza 50009, Spain
[3] Perm State Tech Univ, Perm 614013, Russia
来源
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS | 2005年 / 14卷 / 6-7期
关键词
textile composites; homogenisation;
D O I
10.3166/reef.14.709-728
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Meso-mechanical modelling of textile composites on the "meso" (unit cell) level provides information necessary to produce homogenised properties of the composite material (with the reinforcement deformed during draping), to be used in structural analysis on the "macro" (composite part) level. The input data for the meso-calculations include geometrical model of the sheared textile and properties of the fibres and matrix. Inclusion model proceeds then to an approximate description of the reinforcement as a set of stiff inclusions, representing local orientations of the fibers, and employs the Eshelby solution and Mori-Tanaka or self-consistent homogenisation scheme to calculate the effective stiffness matrix of the composite. Finite element modelling goes through stages of (1) converting the geometrical model into a solid model; (2) meshing; (3) applying periodic boundary conditions and (4) solving a set of models necessary to calculate the homogenised stiffness matrix. All these stages present specific challenges for the case of non-orthogonal translational symmetry of the problem, which are dealt with in the paper for two types of textile reinforcements: woven and non-crimp fabrics.
引用
收藏
页码:709 / 728
页数:20
相关论文
共 25 条
[1]   Meso/macro-mechanical behaviour of textile reinforcements for thin composites [J].
Boisse, P ;
Buet, K ;
Gasser, A ;
Launay, J .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (03) :395-401
[2]  
Carvelli V., 2003, P ICCM 14 SAN DIEG
[3]  
CHAMIS CC, 1989, J COMPOS TECH RES, V11, P3, DOI 10.1520/CTR10143J
[4]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[5]   A poly-inclusion approach for the elastic modelling of knitted fabric composites [J].
Huysmans, G ;
Verpoest, I ;
Van Houtte, P .
ACTA MATERIALIA, 1998, 46 (09) :3003-3013
[6]  
Huysmans G., 2000, UNIFIED MICROMECHANI
[7]  
Loendersloot R., 2003, P 14 SICOMP C
[8]  
Loendersloot R, 2003, P SAMPE EUR, V24, P141
[9]  
Lomov S. V., 2004, P ECCM 11 ROD
[10]   Compression of woven reinforcements: A mathematical model [J].
Lomov, SV ;
Verpoest, I .
JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2000, 19 (16) :1329-1350