Invariance of flows in doubly-connected domains with the same modulus
被引:0
作者:
Cimatti, Giovanni
论文数: 0引用数: 0
h-index: 0
机构:
Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, ItalyUniv Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
Cimatti, Giovanni
[1
]
机构:
[1] Univ Pisa, Dept Math, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
来源:
BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA
|
2014年
/
7卷
/
03期
关键词:
Systems of PDE in divergence form;
Doubly-connected plane domain;
Thermistor problem;
Porous media;
Darcy law;
Soret effect;
Dufour effect;
D O I:
10.1007/s40574-014-0012-y
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
We consider systems of elliptic partial differential equations in divergence form with Dirichlet's boundary conditions in doubly-connected domain of the plane with modulus mu. We prove an invariance property of the corresponding global flows in the class of domains with the same modulus. Applications are given to the problem of electrical heating of a conductor whose thermal and electrical conductivities depend on the temperature and to the flow of a viscous fluid in a porous medium, taking into account the Soret and Dufour's effects.