ASYMPTOTICS OF MAXIMUM-LIKELIHOOD ESTIMATORS FOR THE CURIE-WEISS MODEL

被引:19
作者
COMETS, F [1 ]
GIDAS, B [1 ]
机构
[1] BROWN UNIV,DIV APPL MATH,PROVIDENCE,RI 02912
关键词
MAXIMUM LIKELIHOOD ESTIMATORS; PHASE TRANSITIONS; SUPEREFFICIENCY; CONSISTENCY; ASYMPTOTIC NORMALITY;
D O I
10.1214/aos/1176348111
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotics of the ML estimators for the Curie-Weiss model parameterized by the inverse temperature beta and the external field h. We show that if both beta-and h are unknown, the ML estimator of (beta, h) does not exist. For beta-known, the ML estimator h triple-over-dot n of h exhibits, at a first order phase transition point, superefficiency in the sense that its asymptotic variance is half of that of nearby points. At the critical point (beta = 1), if the true value is h = 0, then n3/4h triple-over-dot n has a non-Gaussian limiting law. Away from phase transition points, h triple-over-dot n is asymptotically normal and efficient. We also study the asymptotics of the ML estimator of beta-for known h.
引用
收藏
页码:557 / 578
页数:22
相关论文
共 22 条
[1]  
BESAG J, 1986, J R STAT SOC B, V48, P259
[2]  
BHADUR RR, 1964, ANN MATH STAT, V35, P1545
[3]   LAPLACE APPROXIMATIONS FOR SUMS OF INDEPENDENT RANDOM VECTORS [J].
BOLTHAUSEN, E .
PROBABILITY THEORY AND RELATED FIELDS, 1986, 72 (02) :305-318
[5]  
Ellis R.S., 1985, ENTROPY LARGE DEVIAT
[6]   LIMIT-THEOREMS FOR SUMS OF DEPENDENT RANDOM-VARIABLES OCCURRING IN STATISTICAL-MECHANICS .2. CONDITIONING, MULTIPLE PHASES, AND METASTABILITY [J].
ELLIS, RS ;
NEWMAN, CM ;
ROSEN, JS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1980, 51 (02) :153-169
[7]   BOUNDARY DETECTION BY CONSTRAINED OPTIMIZATION [J].
GEMAN, D ;
GEMAN, S ;
GRAFFIGNE, C ;
DONG, P .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :609-628
[8]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741
[9]  
Geman S., 1987, P INT C MATH, P1496
[10]  
GEMAN S, 1985, P AM STATIST ASS STA