REMARKS ON A MARKOV CHAIN EXAMPLE OF KOLMOGOROV

被引:13
作者
REUTER, GEH
机构
[1] Department of Mathematics, Imperial College of Science and Technology, London
来源
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE | 1969年 / 13卷 / 3-4期
关键词
D O I
10.1007/BF00539207
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that the stochastic transition matrix P(t), in Kolmogorov's example of a process with an instantaneous state, is uniquely determined by the derivative matrix Q=P′(0), and the most general such substochastic P(t) is also found. The example is used to show that, if 0 is an instantaneous state, then 1-p00(t) can tend to 0 arbitrarily slowly and on the other hand (1-p00 (t))/t can tend to +t8 arbitrarily slowly. © 1969 Springer-Verlag.
引用
收藏
页码:315 / &
相关论文
共 5 条
[1]  
Chung K. L., 1960, Markov Chains with Stationary Transition Probabilities, DOI [10.1007/978-3-642-49686-8, DOI 10.1007/978-3-642-49686-8]
[2]  
DYNKIN E. B., 1965, Markov Processes
[3]  
Kendall D.G., 1954, P INT C MATH AMSTERD, VIII, P377
[4]  
KOLMOGOROV AN, 1951, UCHEN ZAP MGU M, V148, P53
[5]  
Reuter G.E.H., 1956, ARCH MATH, V7, P59