ON QUASI-INTERPOLATION BY RADIAL BASIS FUNCTIONS WITH SCATTERED CENTERS

被引:41
作者
BUHMANN, MD
DYN, N
LEVIN, D
机构
[1] UNIV CAMBRIDGE,DEPT APPL MATH & THEORET PHYS,CAMBRIDGE CB3 9EW,ENGLAND
[2] TEL AVIV UNIV,SCH MATH SCI,RAYMOND & BEVERLY SACKLER FAC EXACT SCI,IL-69978 RAMAT AVIV,ISRAEL
关键词
RADIAL BASIS FUNCTIONS; QUASI-INTERPOLATION; MULTIVARIATE APPROXIMATION; SCATTERED DATA;
D O I
10.1007/BF01203417
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Approximation by radial basis functions with ''quasi-uniformly'' distributed centres in R(d) is discussed. A construction of new polynomially decaying functions that span the approximation space is presented and the properties of the quasi-interpolation operator with these functions are investigated. It is shown that the quasi-interpolant reproduces polynomials and gives approximation orders identical to those in the uniform square-grid case.
引用
收藏
页码:239 / 254
页数:16
相关论文
共 14 条
[1]   UNIVARIATE MULTIQUADRIC APPROXIMATION - QUASI-INTERPOLATION TO SCATTERED DATA [J].
BEATSON, RK ;
POWELL, MJD .
CONSTRUCTIVE APPROXIMATION, 1992, 8 (03) :275-288
[2]   ON QUASI-INTERPOLATION WITH RADIAL BASIS FUNCTIONS [J].
BUHMANN, MD .
JOURNAL OF APPROXIMATION THEORY, 1993, 72 (01) :103-130
[3]   MULTIVARIATE INTERPOLATION IN ODD-DIMENSIONAL EUCLIDEAN SPACES USING MULTIQUADRICS [J].
BUHMANN, MD .
CONSTRUCTIVE APPROXIMATION, 1990, 6 (01) :21-34
[4]   B-SPLINES FROM PARALLELEPIPEDS [J].
DEBOOR, C ;
HOLLIG, K .
JOURNAL D ANALYSE MATHEMATIQUE, 1982, 42 :99-115
[5]   NUMERICAL PROCEDURES FOR SURFACE FITTING OF SCATTERED DATA BY RADIAL FUNCTIONS [J].
DYN, N ;
LEVIN, D ;
RIPPA, S .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1986, 7 (02) :639-659
[6]   ITERATIVE SOLUTION OF SYSTEMS ORIGINATING FROM INTEGRAL-EQUATIONS AND SURFACE INTERPOLATION [J].
DYN, N ;
LEVIN, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1983, 20 (02) :377-390
[7]   ON MULTIVARIATE APPROXIMATION BY INTEGER TRANSLATES OF A BASIS FUNCTION [J].
DYN, N ;
JACKSON, IRH ;
LEVIN, D ;
RON, A .
ISRAEL JOURNAL OF MATHEMATICS, 1992, 78 (01) :95-130
[8]  
DYN N, 1987, APPROXIMATION THEORY, V6, P211
[9]  
DYN N, 1981, APPROXIMATION THEORY, P113
[10]   AN ORDER OF CONVERGENCE FOR SOME RADIAL BASIS FUNCTIONS [J].
JACKSON, IRH .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1989, 9 (04) :567-587