UNCERTAINTY IN VOLATILITY. AN APPLICATION TO THE VALUATION OF BARRIER OPTIONS

被引:0
|
作者
Marabel-Romo, Jacinto [1 ]
Luis Crespo-Espert, Jose [2 ,3 ]
机构
[1] Gestor Derivados Renta Variable BBVA, Via Poblados S-N, Madrid 28033, Spain
[2] Univ Alcala UAH, Inst Univ Anal Econ & Social, Econ Financiera & Contabilidad, Alcala De Henares 28802, Madrid, Spain
[3] Univ Alcala UAH, Dept Ciencias Empresariales, Alcala De Henares 28802, Madrid, Spain
来源
ANALES DEL INSTITUTO DE ACTUARIOS ESPANOLES | 2010年 / 16期
关键词
uncertain volatility; barrier options; gamma; implied volatility; stochastic volatility;
D O I
暂无
中图分类号
F [经济];
学科分类号
02 ;
摘要
Some barrier options, such as the down-and-out puts, exhibit a gamma that changes sign. In this article we price this kind of options assuming that there is uncertainty regarding volatility but it is assumed to lie within a certain range. We present the partial differential equation corresponding to the derivative and solve it numerically using the finite difference method. The results show that barrier option prices are quite sensitive to the existence of uncertainty about volatility. We also show that the prices obtained using the uncertain volatility model are consistent with the prices generated under a stochastic volatility framework.
引用
收藏
页码:161 / 186
页数:26
相关论文
共 50 条
  • [41] Option valuation based on volatility decomposition
    Zhou R.
    Xitong Gongcheng Lilun yu Shijian/System Engineering Theory and Practice, 2018, 38 (08): : 1919 - 1929
  • [42] Efficient trinomial trees for local-volatility models in pricing double-barrier options
    Lok, U. Hou
    Lyuu, Yuh-Dauh
    JOURNAL OF FUTURES MARKETS, 2020, 40 (04) : 556 - 574
  • [43] Valuing futures and options on volatility
    Grunbichler, A
    Longstaff, FA
    JOURNAL OF BANKING & FINANCE, 1996, 20 (06) : 985 - 1001
  • [44] Trading volatility with options on straddle
    Zsembery, L
    SIMULATION IN INDUSTRY, 2004, : 215 - 219
  • [45] Fluctuation identities with continuous monitoring and their application to the pricing of barrier options
    Phelan, Carolyn E.
    Marazzina, Daniele
    Fusai, Gianluca
    Germano, Guido
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 271 (01) : 210 - 223
  • [46] Valuation of European-style vulnerable options under the non-affine stochastic volatility and double exponential jump
    Huang, Shoude
    Guo, Xunxiang
    CHAOS SOLITONS & FRACTALS, 2022, 158
  • [47] On pricing of vulnerable barrier options and vulnerable double barrier options
    Wang, Heqian
    Zhang, Jiayi
    Zhou, Ke
    FINANCE RESEARCH LETTERS, 2022, 44
  • [48] Volatility swaps and volatility options on discretely sampled realized variance
    Lian, Guanghua
    Chiarella, Carl
    Kalev, Petko S.
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2014, 47 : 239 - 262
  • [49] Pricing Discrete Barrier Options Under the Jump-Diffusion Model with Stochastic Volatility and Stochastic Intensity
    Duan, Pingtao
    Liu, Yuting
    Ma, Zhiming
    COMMUNICATIONS IN MATHEMATICS AND STATISTICS, 2024, 12 (02) : 239 - 263
  • [50] Pricing options with dual volatility input to modular neural networks
    Fadda, Sadi
    BORSA ISTANBUL REVIEW, 2020, 20 (03) : 269 - 278