CERTAIN SUMS OF SQUARES OF VECTOR-FIELDS FAIL TO BE ANALYTIC HYPOELLIPTIC

被引:35
作者
CHRIST, M
机构
[1] Department of Mathematics, UCLA, Los Angeles
基金
美国国家科学基金会;
关键词
D O I
10.1080/03605309108820818
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
If m is-an-element-of {3,4,5, ...} then the partial differential operator partial derivative x2 + (partial derivative y - x(m-1) partial derivative t)2 in R3 fails to be analytic hypoelliptic. This results from the existence of parameters zeta is-an-element-of C such that the ordinary differential equation f" = (zeta - x(m-1))2 f has a nontrivial solution which remains bounded as x --> +/- infinity.
引用
收藏
页码:1695 / 1707
页数:13
相关论文
共 17 条
[1]  
CHRIST M, IN PRESS J GEOM ANAL
[2]  
CHRIST M, 1991, INT MATH RES NOTICES, V1, P31
[3]  
CHRIST M, IN PRESS B AMS
[4]  
CHRIST M, IN PRESS LECTURE NOT
[5]  
CHRIST M, CLASS HYPOELIPTIC PD
[6]  
CHRIST M, IN PRESS ANN MATH
[7]  
Coddington A., 1955, THEORY ORDINARY DIFF
[8]  
ETIVIER G, 1981, COMM PDE, V6, P1
[9]  
HANGES N, IN PRESS COMM PDE