AN EXTENSION OF SARKOVSKII THEOREM TO THE N-OD

被引:51
作者
BALDWIN, S [1 ]
机构
[1] AUBURN UNIV,DIV MATH,AUBURN,AL 36849
关键词
D O I
10.1017/S0143385700006131
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The n-od is defined to be the set of all complex numbers z such that z(n) is a real number in the interval [0, 1], i.e., a central point with n copies of the unit interval attached at their endpoints. Given a space X and a function f:X --> X, Per (f) is defined to be the set {k:f has for a point of (least) period k, k a positive integer}. The main result of this paper is to give, for each n, a complete characterization of all possible sets Per (f), where f ranges over all continuous functions on the n-od.
引用
收藏
页码:249 / 271
页数:23
相关论文
共 14 条
[1]   PERIODIC-ORBITS OF MAPS OF-Y [J].
ALSEDA, L ;
LLIBRE, J ;
MISIUREWICZ, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (02) :475-538
[3]  
BALDWIN S, IN PRESS HOUSTON J M
[4]  
BERNHARDT C, 1987, ERGOD THEOR DYN SYST, V7, P155
[5]  
BERNHARDT C, 1984, ERGOD THEOR DYN SYST, V4, P179
[6]  
Block L., 1980, GLOBAL THEORY DYNAMI, V819, P18, DOI 10.1007/BFb0086977
[7]  
IMRICH W, 1985, ANN DISCRETE MATH, V27, P447
[8]  
IMRICH W, 1985, ANN DISCRETE MATH, V27, P433
[9]  
MINC P, 1989, T AM MATH SOC, V315, P173
[10]  
MISIUREWICZ M, 1988, COMBINATORIAL PATTER