DISCUSSION ON THE DIFFERENTIABLE SOLUTIONS OF THE ITERATED EQUATION SIGMA-IN = LAMBDA-IFI(X) = F(X)

被引:70
作者
ZHANG, WI
机构
[1] Department of Mathematics, Peking University, Beijing
关键词
Ascoli-Arzela lemma; contraction principle; differentiable solution; existence; Iterated equation; Schauder's fixed point theorem; stability; uniqueness;
D O I
10.1016/0362-546X(90)90147-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:387 / 398
页数:12
相关论文
共 11 条
[1]  
Abel NH, 1881, OEUVRES COMPLETES, VII, P36
[2]  
DHOMBRES JG, 1977, PUBL MATH-DEBRECEN, V24, P277
[3]  
DUBBEY JM, 1978, MATH WORK C BABBAGE
[4]  
KUCZMA M, 1968, MONOGRAFIE MATEMATYC, V46, P383
[5]   ON A FUNCTIONAL-EQUATION INVOLVING ITERATES OF A BIJECTION ON THE UNIT INTERVAL [J].
MUKHERJEA, A ;
RATTI, JS .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1983, 7 (08) :899-908
[6]   WHEN IS F(F(Z))=AZ2+BZ+C [J].
RICE, RE ;
SCHWEIZER, B ;
SKLAR, A .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (04) :252-263
[7]  
Zhang J., 1983, ACTA MATH SIN, V26, P398
[8]  
ZHANG J, 1982, ACTA SCI NAT U PEKIN, V6, P23
[9]   STABILITY OF THE SOLUTION OF THE ITERATED EQUATION SIGMA-I=IN-LAMBDA-IF(X)=F(X) [J].
ZHANG, WN .
ACTA MATHEMATICA SCIENTIA, 1988, 8 (04) :421-424
[10]  
ZHANG WN, 1987, KEXUE TONGBAO, V32, P1444