SHAPE-INVARIANT POTENTIALS FOR SYSTEMS WITH MULTICOMPONENT WAVE-FUNCTIONS

被引:21
作者
FUKUI, T [1 ]
机构
[1] OSAKA UNIV,NUCL PHYS RES CTR,IBARAKI,OSAKA 567,JAPAN
关键词
D O I
10.1016/0375-9601(93)90717-E
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The shape-invariance condition, which is introduced in the context of supersymmetric quantum mechanics, is generalized for the systems described with two-component wave functions. As a simple example, a generalization of the familiar sech2 potential is proposed.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 11 条
[1]   RELATIONSHIP BETWEEN SUPERSYMMETRY AND SOLVABLE POTENTIALS [J].
COOPER, F ;
GINOCCHIO, JN ;
KHARE, A .
PHYSICAL REVIEW D, 1987, 36 (08) :2458-2473
[2]   SUPERSYMMETRY AND THE DIRAC-EQUATION [J].
COOPER, F ;
KHARE, A ;
MUSTO, R ;
WIPF, A .
ANNALS OF PHYSICS, 1988, 187 (01) :1-28
[3]   PROPAGATORS FOR SHAPE-INVARIANT POTENTIALS [J].
DAS, A ;
HUANG, WJ .
PHYSICAL REVIEW D, 1990, 41 (10) :3241-3247
[4]   PATH-INTEGRAL SOLUTIONS FOR SHAPE-INVARIANT POTENTIALS USING POINT CANONICAL-TRANSFORMATIONS [J].
DE, R ;
DUTT, R ;
SUKHATME, U .
PHYSICAL REVIEW A, 1992, 46 (11) :6869-6880
[5]   MAPPING OF SHAPE INVARIANT POTENTIALS UNDER POINT CANONICAL-TRANSFORMATIONS [J].
DE, R ;
DUTT, R ;
SUKHATME, U .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (13) :L843-L850
[6]  
Gendenshtein L. E., 1985, Soviet Physics - Uspekhi, V28, P645, DOI 10.1070/PU1985v028n08ABEH003882
[7]  
GENDENSHTEIN LE, 1983, JETP LETT+, V38, P356
[8]  
GINOCCHIO JN, 1986, SYMMETRIES SCI, V2, P175
[9]   THE FACTORIZATION METHOD [J].
INFELD, L ;
HULL, TE .
REVIEWS OF MODERN PHYSICS, 1951, 23 (01) :21-68
[10]   EXACTLY SOLVABLE NONSHAPE-INVARIANT POTENTIALS [J].
SINGH, CA ;
DEVI, TH .
PHYSICS LETTERS A, 1992, 171 (5-6) :249-252