VPHL: A Verified Partial-Correctness Logic for Probabilistic Programs

被引:9
作者
Rand, Robert [1 ]
Zdancewic, Steve [1 ]
机构
[1] Univ Penn, Comp & Informat Sci, Philadelphia, PA 19104 USA
关键词
Hoare Logic; Formal Verification; Coq; Probabilistic Programming; Non-termination;
D O I
10.1016/j.entcs.2015.12.021
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We introduce a Hoare-style logic for probabilistic programs, called VPHL, that has been formally verified in the Coq proof assistant. VPHL features propositional, rather than additive, assertions and a simple set of rules for reasoning about these assertions using the standard axioms of probability theory. VPHL's assertions are partial correctness assertions, meaning that their conclusions are dependent upon (deterministic) program termination. The underlying simple probabilistic imperative language, PrImp, includes a probabilistic toss operator, probabilistic guards and potentially-non-terminating while loops.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 22 条
[1]   Proofs of randomized algorithms in COQ [J].
Audebaud, Philippe ;
Paulin-Mohring, Christine .
SCIENCE OF COMPUTER PROGRAMMING, 2009, 74 (08) :568-589
[2]   Easycrypt: A tutorial [J].
1600, Springer Verlag (8604) :146-166
[3]  
Barthe G, 2011, LECT NOTES COMPUT SC, V6841, P71, DOI 10.1007/978-3-642-22792-9_5
[4]   Formal Certification of Code-Based Cryptographic Proofs [J].
Barthe, Gilles ;
Gregoire, Benjamin ;
Beguelin, Santiago Zanella .
ACM SIGPLAN NOTICES, 2009, 44 (01) :90-101
[5]   Simple relational correctness proofs for static analyses and program transformations [J].
Benton, N .
ACM SIGPLAN NOTICES, 2004, 39 (01) :14-25
[6]   Reasoning about probabilistic sequential programs [J].
Chadha, R. ;
Cruz-Filipe, L. ;
Mateus, P. ;
Sernadas, A. .
THEORETICAL COMPUTER SCIENCE, 2007, 379 (1-2) :142-165
[7]  
Chadha R, 2006, LECT NOTES COMPUT SC, V4207, P240
[8]  
Cock D, 2012, P 7 SYST SOFTW VER N, P1
[9]  
Den Hartog J. I., 2002, International Journal of Foundations of Computer Science, V13, P315, DOI 10.1142/S012905410200114X
[10]  
Feldman Y.A., 1982, P 14 ANN ACM S THEOR, P181