Sequences of Definite Integrals, Factorials and Double Factorials

被引:0
|
作者
Dana-Picard, Thierry [1 ]
机构
[1] Jerusalem Coll Technol, Dept Appl Math, Havaad Haleumi Str 21,POB 16031, IL-91160 Jerusalem, Israel
关键词
parametric integrals; double factorials; combinatorics;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study sequences of definite integrals. Some of them provide closed forms involving factorials and/or double factorials. Other examples are associated with either sequences or pairs of sequences of rational numbers, for which summations are found.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Sums or products of double factorials in Lucas sequences
    Zhang, Shaonan
    Yang, Peng
    Cai, Tianxin
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2024, 20 (08) : 1943 - 1965
  • [2] Factorials and the finite sequences of sets
    Sonpanow, Nattapon
    Vejjajiva, Pimpen
    MATHEMATICAL LOGIC QUARTERLY, 2019, 65 (01) : 116 - 120
  • [3] On factorials in Perrin and Padovan sequences
    Irmak, Nurettin
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (05) : 2602 - 2609
  • [4] Squares and factorials in products of factorials
    Luca, F.
    Saradha, N.
    Shorey, T. N.
    MONATSHEFTE FUR MATHEMATIK, 2014, 175 (03): : 385 - 400
  • [5] Remark on factorials that are products of factorials
    Bhat, K. G.
    Ramachandra, K.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 317 - 320
  • [6] Squares and factorials in products of factorials
    F. Luca
    N. Saradha
    T. N. Shorey
    Monatshefte für Mathematik, 2014, 175 : 385 - 400
  • [7] Remark on factorials that are products of factorials
    K. G. Bhat
    K. Ramachandra
    Mathematical Notes, 2010, 88 : 317 - 320
  • [8] Sums of factorials in binary recurrence sequences
    Grossman, G
    Luca, F
    JOURNAL OF NUMBER THEORY, 2002, 93 (02) : 87 - 107
  • [9] Products of factorials in binary recurrence sequences
    Luca, F
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1999, 29 (04) : 1387 - 1411
  • [10] On factorials which are products of factorials
    Luca, Florian
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2007, 143 : 533 - 542