L-2-PRIME AND DIMENSIONAL MODULES

被引:0
作者
Vedadi, M. R. [1 ]
机构
[1] Isfahan Univ Technol, Dept Math Sci, Esfahan 8415683111, Iran
来源
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA | 2010年 / 7卷
关键词
dimension map; hereditary ring; Krull dimension; L-2-Noetherian; L-2-prime submodule;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a map that generalizes Krull and Noetherian dimensions. If M-R finitely generates all fully invariant submodules and has acc on them, there are only a finite number of minimal L-2-prime submodules P-i(1 <= i <= m) and when defined, k(M) = k(M/P-j) for some j. Here, each M/P-i is a prime R-module, and in particular, M has finite length if every irreducible prime submodule of M is maximal. Quasi-projective L-2-prime R-module with non-zero socle are investigated and some applications are then given when k(M) means the Krull dimension or the injective dimension.
引用
收藏
页码:47 / 58
页数:12
相关论文
共 16 条