On dense subspaces of C-p(X)

被引:0
|
作者
Sakai, Masami [1 ]
机构
[1] Kanagawa Univ, Dept Math, Yokohama, Kanagawa 2218686, Japan
来源
NOTE DI MATEMATICA | 2007年 / 27卷
关键词
function space; dense subspace; caliber; (kappa; kappa)-compact; kappa)-narrow; linearly Lindelof; omega-cover; gamma-cover; Frechet;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a Tychonoff space X, we denote by C-p(X) the space of all real-valued continuous functions on X with the topology of pointwise convergence. We show the following: (1) if omega(1) is a caliber for every dense subspace of C-p(X), then C-p(X) is (omega(1),omega(1))-narrow; (2) if every dense subspace of C-p(X) is compact-dense in C-p(X), then every non-trivial countable omega-cover of open sets of X contains a gamma-cover. The first result gives the positive answer to Problem 4.4 in [6], and the second one is a partial answer to Problem 4.3 in [6].
引用
收藏
页码:41 / 46
页数:6
相关论文
共 50 条
  • [1] A COUNTABLE X HAVING A CLOSED SUBSPACE A WITH C-P(A) NOT A FACTOR OF C-P(X)
    MARCISZEWSKI, W
    TOPOLOGY AND ITS APPLICATIONS, 1995, 64 (02) : 141 - 147
  • [2] Sequential range of C-p(X)
    Rodriguez, Armando
    CIENCIA E INGENIERIA, 2018, 39 (01): : 97 - 106
  • [3] Galois module structure of the integers in wildly ramified C-p x C-p extensions
    Elder, GG
    Madan, ML
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1997, 49 (04): : 722 - 735
  • [4] WHAT IF C-P(X) IS PERFECTLY NORMAL
    TKACHUK, VV
    TOPOLOGY AND ITS APPLICATIONS, 1995, 65 (01) : 57 - 67
  • [5] THE DUAL OF THE LOCALLY CONVEX SPACE C-p (X)
    Ferrando, J. C.
    Kakol, Jerzy
    Saxon, Stephen A.
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2014, 50 (02) : 389 - 399
  • [6] How sensitive is C-p(X, Y) to changes in X and/or Y?
    Buzyakova, Raushan Z.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (04): : 657 - 665
  • [7] Nonnormal spaces C-p(X) with countable extent
    Just, W
    Sipacheva, OV
    Szeptycki, PJ
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (04) : 1227 - 1235
  • [8] The Cech number of C-p(X) when X is an ordinal space
    Alas, Ofelia T.
    Tamariz-Mascarua, Angel
    APPLIED GENERAL TOPOLOGY, 2008, 9 (01): : 67 - 76
  • [9] On linear continuous open surjections of the spaces C-p(X)
    Leiderman, A
    Levin, M
    Pestov, V
    TOPOLOGY AND ITS APPLICATIONS, 1997, 81 (03) : 269 - 279