ALGORITHM FOR FINDING THE DISTRIBUTION OF MAXIMAL ENTROPY

被引:182
作者
AGMON, N [1 ]
ALHASSID, Y [1 ]
LEVINE, RD [1 ]
机构
[1] MIT,DEPT CHEM,CAMBRIDGE,MA 02139
关键词
D O I
10.1016/0021-9991(79)90102-5
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
An algorithm for determining the distribution of maximal entropy subject to constraints is presented. The method provides an alternative to the conventional procedure which requires the numerical solution of a set of implicit nonlinear equations for the Lagrange multipliers. Here they are determined by seeking a minimum of a concave function, a procedure which readily lends itself to computational work. The program also incorporates two preliminary stages. The first verifies that the constraints are linearly independent and the second checks that a feasible solution exists. © 1979.
引用
收藏
页码:250 / 258
页数:9
相关论文
共 10 条
[1]   UPPER BOUND FOR ENTROPY AND ITS APPLICATIONS TO MAXIMAL ENTROPY PROBLEM [J].
ALHASSID, Y ;
AGMON, N ;
LEVINE, RD .
CHEMICAL PHYSICS LETTERS, 1978, 53 (01) :22-26
[2]  
ASH R, 1965, INFORMATION THEORY
[3]  
DAX A, 1979, SIAM J NUMERICAL ANA, V16, pR30
[4]  
GASS SI, 1975, LINEAR PROGRAMMING M
[5]  
Jaynes E T, 1963, STATISTICAL PHYSICS, V3, P181
[6]   INFORMATION THEORY AND STATISTICAL MECHANICS [J].
JAYNES, ET .
PHYSICAL REVIEW, 1957, 106 (04) :620-630
[7]  
Levine R D, 1976, DYNAMICS MOL COLLI B, V2, P323
[8]   ENTROPY AND MACROSCOPIC DISEQUILIBRIUM .2. INFORMATION THEORETIC CHARACTERIZATION OF MARKOVIAN RELAXATION PROCESSES [J].
LEVINE, RD .
JOURNAL OF CHEMICAL PHYSICS, 1976, 65 (08) :3302-3315
[9]  
LEVINE RD, 1977, CHEMICAL BIOCHEMICAL, V2, P145
[10]  
TRIBUS M, 1971, RATIONAL DESCRIPTION