Applied Comparison of DBSCAN, OPTICS and K-Means Clustering Algorithms

被引:0
作者
Bilgin, Turgay Tugay [1 ]
Camurcu, Yilmaz [2 ]
机构
[1] Maltepe Univ, Muhendislik Mimarlik Fak, Basibuyuk Kampusu, Istanbul, Turkey
[2] Marmara Univ, Tekn Egitim Fak, Istanbul, Turkey
来源
JOURNAL OF POLYTECHNIC-POLITEKNIK DERGISI | 2005年 / 8卷 / 02期
关键词
Data mining; Clustering Analysis; DBSCAN; OPTICS; K-means;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
DBSCAN and OPTICS are two recent clustering algorithms on data mining. In this study, these two algorithms and K-means which is one of the oldest clustering algorithms are compared. Comparison is based on cluster discovery performance on synthetic database. Consequently, two recent clustering algorithms DBSCAN and OPTICS are performed superior accuracy and cluster discovery ability over K-means algorithm.
引用
收藏
页码:139 / 145
页数:7
相关论文
共 20 条
[1]  
Ankerst M, 1999, SIGMOD RECORD, VOL 28, NO 2 - JUNE 1999, P49
[2]  
Beckmann N., 1990, SIGMOD, P322, DOI DOI 10.1145/93597.98741
[3]  
Berkhin P., 2002, SURVEY CLUSTERING DA
[4]  
Bradley P. S., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P9
[5]  
BRINKHOFF T, 1994, P ACM SIGMOD INT C M, P197
[6]   Data mining: An overview from a database perspective [J].
Chen, MS ;
Han, JW ;
Yu, PS .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 1996, 8 (06) :866-883
[7]  
Ester M., 1996, KDD-96 Proceedings. Second International Conference on Knowledge Discovery and Data Mining, P226
[8]  
FAYYAD UM, 1994, ADV DATA MINING KNOW
[9]  
Fukunaga, 1990, INTRO STAT PATTERN R
[10]  
Grossman R. L., 2001, DATA MINING SCI ENG