EXTENSIONS OF OPIALS INEQUALITY

被引:33
作者
BEESACK, PR
DAS, KM
机构
[1] Carleton University, Ottawa
关键词
D O I
10.2140/pjm.1968.26.215
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper certain inequalities involving integrals of powers of a function and of its derivative are proved. The prototype of such inequalities is Opia's Inequality which states when ever y is absolutely continuous on [0, X] with y(0) = 0. The extensions where r, s are nonnegative, measurable functions on or both. In some cases y may be complex-valued, while in other cases In all cases, necessary and sufficient conditions are obtained for equality to hold. © 1968 by Pacific Journal of Mathematics.
引用
收藏
页码:215 / &
相关论文
共 11 条
[1]  
Beesack P.R., 1962, T AM MATH SOC, V104, P470, DOI [10.1090/s0002-9947-1962-0139706-1, DOI 10.1090/S0002-9947-1962-0139706-1]
[2]  
Calvert J., 1967, P AM MATH SOC, V18, P72, DOI [https://doi.org/10.1090/s0002-9939-1967-0204594-1, DOI 10.1090/S0002-9939-1967-0204594-1]
[3]  
Hua L. G., 1965, SCI SINICA, V14, P789
[4]  
Levinson N., 1964, P AM MATH SOC, V15, P565, DOI [10.1090/s0002-9939-1964-0166315-8, DOI 10.1090/S0002-9939-1964-0166315-8]
[5]   AN EVEN SIMPLER PROOF OF OPIALS INEQUALITY [J].
MALLOWS, CL .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :173-&
[6]  
Olech C., 1960, ANN POL MATH, V8, P61
[7]  
Opial Z., 1960, ANN POL MATH, V8, P29, DOI DOI 10.4064/AP-7-3-247-254
[8]   ON AN INEQUALITY OF OPIAL BEESACK AND LEVINSON [J].
PEDERSON, RN .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 16 (01) :174-&
[9]   INEQUALITIES WITH 3 FUNCTIONS [J].
REDHEFFER, R .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 16 (02) :219-+
[10]   A DISCRETE ANALOGUE OF OPIALS INEQUALITY [J].
WONG, JSW .
CANADIAN MATHEMATICAL BULLETIN, 1967, 10 (01) :115-&