INVARIANCE PROPERTY OF THE BRILLOUIN-WIGNER PERTURBATION SERIES

被引:76
作者
FEENBERG, E
机构
来源
PHYSICAL REVIEW | 1956年 / 103卷 / 04期
关键词
D O I
10.1103/PhysRev.103.1116
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1116 / 1119
页数:4
相关论文
共 50 条
[41]   On the application of Brillouin-Wigner perturbation theory to a relativistic and non-relativistic hydrogenic model problem [J].
Quiney, HM ;
Hubac, I ;
Wilson, S .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2001, 34 (22) :4323-4337
[42]   Investigation of Multiple-Bond Dissociation Using Brillouin-Wigner Perturbation with Improved Virtual Orbitals [J].
Chattopadhyay, Sudip .
JOURNAL OF PHYSICAL CHEMISTRY A, 2020, 124 (07) :1444-1463
[43]   Optimizing the regularization in size-consistent second-order Brillouin-Wigner perturbation theory [J].
Carter-Fenk, Kevin ;
Shee, James ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (17)
[44]   PADE APPROXIMANTS AND INNER PROJECTIONS IN BRILLOUIN-WIGNER PERTURBATION SCHEME FOR HE-LIKE IONS [J].
BENDAZZOLI, GL ;
GOSCINSKI, O ;
ORLANDI, G .
PHYSICAL REVIEW A-GENERAL PHYSICS, 1970, 2 (01) :2-+
[45]   Repartitioned Brillouin-Wigner perturbation theory with a size-consistent second-order correlation energy [J].
Carter-Fenk, Kevin ;
Head-Gordon, Martin .
JOURNAL OF CHEMICAL PHYSICS, 2023, 158 (23)
[46]   VARIATIONAL SOLUTIONS TO BRILLOUIN-WIGNER PERTUBATION DIFFERENTIAL EQUATIONS [J].
MEATH, WJ ;
HIRSCHFELDER, JO .
JOURNAL OF CHEMICAL PHYSICS, 1964, 41 (06) :1628-&
[47]   BRILLOUIN-WIGNER THEORY AND QUASI-BOUND STATES [J].
KILLINGBECK, J .
PHYSICS LETTERS A, 1978, 66 (06) :430-432
[48]   REGULAR PERTURBATIONS, BRILLOUIN-WIGNER EXPANSION, AND CONTINUED FRACTIONS [J].
GRAFFI, S .
JOURNAL OF MATHEMATICAL PHYSICS, 1974, 15 (05) :521-523
[49]   Comparison of the Brillouin-Wigner coupled cluster theory with the standard coupled cluster theory. Cancellation of disconnected terms in the Brillouin-Wigner coupled cluster theory [J].
Masik, J ;
Hubac, I .
COLLECTION OF CZECHOSLOVAK CHEMICAL COMMUNICATIONS, 1997, 62 (06) :829-842
[50]   The Brillouin-Wigner expansion in a relativistic two-body formalism [J].
Baklanov, E. V. .
LASER PHYSICS, 2008, 18 (01) :22-26