Bioactive and Biodegradable Nanocomposites and Hybrid Biomaterials for Bone Regeneration

被引:105
作者
Allo, Bedilu A. [1 ]
Costa, Daniel O. [1 ]
Dixon, S. Jeffrey [2 ]
Mequanint, Kibret [1 ]
Rizkalla, Amin S. [1 ,3 ]
机构
[1] Univ Western Ontario, Dept Chem & Biochem Engn, London, ON N6A 5B9, Canada
[2] Univ Western Ontario, Schulich Sch Med & Dent, Dept Physiol & Pharmacol, London, ON N6A 5C1, Canada
[3] Univ Western Ontario, Schulich Sch Med & Dent, Biomat Sci, London, ON N6A 5C1, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大健康研究院;
关键词
bioactive glass; biodegradable polymers; bone regeneration; hydroxyapatite; organic-inorganic hybrid; nanocomposite;
D O I
10.3390/jfb3020432
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Strategies for bone tissue engineering and regeneration rely on bioactive scaffolds to mimic the natural extracellular matrix and act as templates onto which cells attach, multiply, migrate and function. Of particular interest are nanocomposites and organic-inorganic (O/I) hybrid biomaterials based on selective combinations of biodegradable polymers and bioactive inorganic materials. In this paper, we review the current state of bioactive and biodegradable nanocomposite and O/I hybrid biomaterials and their applications in bone regeneration. We focus specifically on nanocomposites based on nano-sized hydroxyapatite (HA) and bioactive glass (BG) fillers in combination with biodegradable polyesters and their hybrid counterparts. Topics include 3D scaffold design, materials that are widely used in bone regeneration, and recent trends in next generation biomaterials. We conclude with a perspective on the future application of nanocomposites and O/I hybrid biomaterials for regeneration of bone.
引用
收藏
页数:32
相关论文
共 171 条
[1]   Sol-gel silica-based biomaterials and bone tissue regeneration [J].
Arcos, Daniel ;
Vallet-Regi, Maria .
ACTA BIOMATERIALIA, 2010, 6 (08) :2874-2888
[2]   Polyvinyl alcohol-collagen-hydroxyapatite biocomposite nanofibrous scaffold: Mimicking the key features of natural bone at the nanoscale level [J].
Asran, Ashraf Sh. ;
Henning, S. ;
Michler, Goerg H. .
POLYMER, 2010, 51 (04) :868-876
[3]   Orthopaedic applications for PLA-PGA biodegradable polymers [J].
Athanasiou, KA ;
Agrawal, CM ;
Barber, FA ;
Burkhart, SS .
ARTHROSCOPY-THE JOURNAL OF ARTHROSCOPIC AND RELATED SURGERY, 1998, 14 (07) :726-737
[4]   Osteogenecity of octacalcium phosphate coatings applied on porous metal implants [J].
Barrère, F ;
van der Valk, CM ;
Dalmeijer, RAJ ;
Meijer, G ;
van Blitterswijk, CA ;
de Groot, K ;
Layrolle, P .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2003, 66A (04) :779-788
[5]  
Bauer TW, 2000, CLIN ORTHOP RELAT R, P10
[6]   Chemical synthesis of polylactide and its copolymers for medical applications [J].
Bendix, D .
POLYMER DEGRADATION AND STABILITY, 1998, 59 (1-3) :129-135
[7]   Nucleation and growth of mineralized bone matrix on silk-hydroxyapatite composite scaffolds [J].
Bhumiratana, Sarindr ;
Grayson, Warren L. ;
Castaneda, Andrea ;
Rockwood, Danielle N. ;
Gil, Eun S. ;
Kaplan, David L. ;
Vunjak-Novakovic, Gordana .
BIOMATERIALS, 2011, 32 (11) :2812-2820
[8]   The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model [J].
Bigi, Adriana ;
Fini, Milena ;
Bracci, Barbara ;
Boanini, Elisa ;
Torricelli, Paola ;
GiavareSi, Gianluca ;
Aldini, Nicolo N. ;
Facchini, Alessandro ;
Sbaiz, Fausto ;
Giardino, Roberto .
BIOMATERIALS, 2008, 29 (11) :1730-1736
[9]   Nanohydroxyapatite/poly(ester urethane) scaffold for bone tissue engineering [J].
Boissard, C. I. R. ;
Bourban, P. -E. ;
Tami, A. E. ;
Alini, M. ;
Eglin, D. .
ACTA BIOMATERIALIA, 2009, 5 (09) :3316-3327
[10]   Comparative in vivo evaluation of porous and dense duplex titanium and hydroxyapatite coating with high roughnesses in different implantation environments [J].
Borsari, V. ;
Fini, M. ;
Giavaresi, G. ;
Tschon, M. ;
Chiesa, R. ;
Chiusoli, L. ;
Salito, A. ;
Rimondini, L. ;
Giardino, R. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2009, 89A (02) :550-560