Composition of Products of Birch Wood Delignification by Hydrogen Peroxide in the Medium "Acetic Acid - Water - Catalyst TiO2"

被引:3
|
作者
Garyntseva, Natalia, V [1 ]
Sudakova, Irina G. [1 ]
Kondrasenko, Alexander A. [1 ]
Skripnikov, Andrey M. [1 ]
Kuznetsov, Boris N. [1 ]
Taran, Oxana P. [2 ]
Agabekov, Vladimir E. [3 ]
机构
[1] SB RAS, Inst Chem & Chem Technol, 50-24 Akademgorodok, Krasnoyarsk 660049, Russia
[2] Boreskov Inst Catalysi, Novosibirsk 630090, Russia
[3] NAS Belarus, Inst Chem New Mat, Minsk 220141, BELARUS
来源
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-CHEMISTRY | 2015年 / 8卷 / 03期
关键词
birch wood; delignification; hydrogen peroxide; acetic acid; TiO2; catalyst; cellulose; soluble products; structure; composition;
D O I
10.17516/1998-2836-2015-8-3-450-464
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The composition and structure of the solid and soluble products of birch wood delignification by H2O2 in the presence of TiO2 catalyst were studied. The efficient delignification of wood proceeds at 100 degrees C and atmospheric pressure. The obtained microcrystalline cellulose (yield 48.2% mass.), has crystallinity index 0.81 and contain 93.7% mass. cellulose, 5.5% mass. hemicelluloses and 0.5% mass. lignin. Soluble products of birch wood peroxide delignification are mainly presented by 4-O-methyl-glucuronoxylan (84% rel.), monosaccharides and they contain very few aromatic compounds.
引用
收藏
页码:450 / 464
页数:15
相关论文
共 50 条
  • [41] Decomposition of acetic acid for hydrogen production over Pd/Al2O3 and Pd/TiO2: Influence of metal precursor
    Esteves, Laura M.
    Brijaldo, Maria H.
    Passos, Fabio B.
    JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2016, 422 : 275 - 288
  • [42] Nickel phthalocyanine@graphene oxide/TiO2 as an efficient degradation catalyst of formic acid toward hydrogen production
    Keshipour, Sajjad
    Mohammad-Alizadeh, Shima
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [43] TiO2/Ag-based photodeposited catalyst boosted electrochemiluminescence of ninhydrin-hydrogen peroxide system for ultrasensitive sensing of copper (II)
    Xiong, Haitao
    Wang, Mengyang
    Qiang, Ruirui
    Wu, Yingchun
    Zheng, Xingwang
    ANALYTICA CHIMICA ACTA, 2024, 1290
  • [44] Hydrogenation of Aqueous Acetic Acid over Ru-Sn/TiO2 Catalyst in a Flow-Type Reactor, Governed by Reverse Reaction
    Zhao, Yuanyuan
    Konishi, Kansei
    Minami, Eiji
    Saka, Shiro
    Kawamoto, Haruo
    CATALYSTS, 2020, 10 (11) : 1 - 13
  • [45] Unravelling water effects on solid acid catalysts: Case study of TiO2/SiO2 as a catalyst for the dehydration of isobutanol
    Buniazet, Z.
    Couble, J.
    Bianchi, D.
    Rivallan, M.
    Cabiac, A.
    Maury, S.
    Loridant, S.
    JOURNAL OF CATALYSIS, 2017, 348 : 125 - 134
  • [46] The influence of physico-chemical properties of TiO2 on photocatalytic generation of C1-C3 hydrocarbons and hydrogen from aqueous solution of acetic acid
    Mozia, Sylwia
    Heciak, Aleksandra
    Morawski, Antoni W.
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 104 (1-2) : 21 - 29
  • [47] Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption
    Kowalski, Piotr M.
    Meyer, Bernd
    Marx, Dominik
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [48] Photocatalytic Destruction of Non-Ionic Surfactant Triton X-100 with Hydrogen Peroxide in Water in the Reactors with Immobilized TiO2
    Yu. O. Shvadchina
    V. F. Vakulenko
    A. M. Sova
    Yu. V. Topkin
    Journal of Water Chemistry and Technology, 2023, 45 : 552 - 563
  • [49] Kinetic Studies on the Impact of Pd Addition to Ru/TiO2 Catalyst: Levulinic Acid to γ-Valerolactone under Ambient Hydrogen Pressure
    Xu, Guangyue
    Li, Chuang
    Deng, Tianyu
    Wang, Chenguang
    Zhang, Ying
    Fu, Yao
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2020, 59 (39) : 17279 - 17286
  • [50] Degradation of Acid Scarlet 3R dye using oxidation strategies involving photocatalysis based on Fe doped TiO2 photocatalyst, ultrasound and hydrogen peroxide
    Mahendran, Valarmathi
    Gogate, Parag R.
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 274 (274)