THE CLASSIFICATION OF SELF-ORTHOGONAL CODES OVER Z(p2) OF LENGTHS <= 3

被引:0
作者
Choi, Whan-Hyuk [1 ]
Kim, Kwang Ho [1 ]
Park, Sook Young [1 ]
机构
[1] Kangwon Natl Univ, Dept Math, Chunchon 200701, South Korea
来源
KOREAN JOURNAL OF MATHEMATICS | 2014年 / 22卷 / 04期
关键词
codes over rings; self-orthogonal codes; classification;
D O I
10.11568/kjm.2014.22.4.725
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we find all inequivalent classes of selforthogonal codes over Z(p2) of lengths l <= 3 for all primes p, using similar method as in [3]. We find that the classification of self-orthogonal codes over Z(p2) includes the classification of all codes over Z(p). Consequently, we classify all the codes over Zp and self-orthogonal codes over Z(p2) of lengths l <= 3 according to the automorphism group of each code.
引用
收藏
页码:725 / 742
页数:18
相关论文
共 10 条
[1]  
Betty R.A., 2009, J COMBIN INFORM SYST, V34, P51
[2]  
Choi W., PREPRINT
[3]   SELF-DUAL CODES OVER THE INTEGERS MODULO-4 [J].
CONWAY, JH ;
SLOANE, NJA .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :30-45
[4]   Optimal linear codes over Zm [J].
Dougherty, Steven T. ;
Gulliver, T. Aaron ;
Park, Young Ho ;
Wong, John N. C. .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2007, 44 (05) :1139-1162
[5]  
Huffman W., 1997, FUNDAMENTALS ERROR C
[6]  
Lee Y., 2012, CORR
[7]  
Nagata K., 2008, 11 INT WORKSH ALG CO, P215
[8]   The classification of self-dual modular codes [J].
Park, Young Ho .
FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (05) :442-460
[9]  
PLESS V, 1965, ATTI ACCAD NAZ LIN, V39, P418
[10]  
Pless VS., 1968, J COMBINATORIAL THEO, V5, P215, DOI DOI 10.1016/S0021-9800(68)80067-50172.43105