RELAXATION OF QUASI-CONVEX FUNCTIONALS IN BV (OMEGA, R(P)) FOR INTEGRANDS F(X, U, DEL U)

被引:133
作者
FONSECA, I [1 ]
MULLER, S [1 ]
机构
[1] INST ANGEW MATH,D-53115 BONN,GERMANY
关键词
D O I
10.1007/BF00386367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper it is shown that if f(x, u, .) is a quasiconvex function with linear growth, then the relaxed functional in BV(OMEGA, R(p)) of u --> integral/OMEGA f(x, u(x), delu(x)) dx with respect to the L1 topology has an integral representation of the form F(u) = integral/OMEGA f(x, u(x), delu(x)) dx + integral/SIGMA(u) K(x, u-(x), u+(x), v(x)) dH(N-1)(x) + integral/OMEGA f(infinity)(x, u(x), dC(u)) where Du = delu dx + (u+ - u-) x v dH(N-1) L SIGMA(u) + C(u). The proof relies on a blow-up argument introduced by FONSECA & MULLER in the case where u is-an-element-of W1,1 and on a recent result by ALBERTI showing that the Cantor part C(u) is rank-one valued.
引用
收藏
页码:1 / 49
页数:49
相关论文
共 35 条
[1]   SEMICONTINUITY PROBLEMS IN THE CALCULUS OF VARIATIONS [J].
ACERBI, E ;
FUSCO, N .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1984, 86 (02) :125-145
[2]  
ALBERTI G, IN PRESS RANK ONE PR
[3]  
AMBROSIO L, 1991, J MATH PURE APPL, V70, P269
[4]  
AMBROSIO L, IN PRESS RELAXATION
[5]  
AMBROSIO L, IN PRESS INTEGRAL RE
[6]   VARIATIONAL INTEGRALS ON MAPPINGS OF BOUNDED VARIATION AND THEIR LOWER SEMICONTINUITY [J].
AVILES, P ;
GIGA, Y .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1991, 115 (03) :201-255
[7]  
BALDO S, IN PRESS ANN I H POI
[8]  
BALL JM, 1984, J FUNCT ANAL, V58, P225, DOI 10.1016/0022-1236(84)90041-7
[9]  
Dacorogna, 1989, APPL MATH SCI, V78
[10]  
DALMASO G, 1980, MANUSCRIPTA MATH, V30, P387