ON THE EXISTENCE OF BOUNDARY VALUES OF SOLUTIONS OF ELLIPTIC EQUATIONS

被引:0
作者
Mikhailov, V. P. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Dept Math Phys, 8 Gubkina St, Moscow 119991, Russia
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2013年 / 01期
关键词
elliptic equations; classical and generalized solutions; limits of boundary values; existence theorems;
D O I
10.14498/vsgtu1145
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the paper we show a survey of results related to the existence of boundary values of solutions of elliptic equations.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1931, J LONDON MATH SOC, DOI 10.1112/jlms/s1-6.3.230
[2]   L-p-ESTIMATES OF THE NONTANGENTIAL MAXIMAL FUNCTION FOR A SECOND-ORDER ELLIPTIC EQUATION SOLUTIONS [J].
Gushchin, A. K. .
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI, 2013, (01) :53-69
[3]  
Gushchin A. K., 1988, MATH USSR SB, V137(179), P19, DOI [DOI 10.1070/SM1990V065N01ABEH002075, 10.1070/SM1990v065n01ABEH002075]
[4]  
Gushchin A. K., 2008, VESTN SAMGU YESTESTV, P61
[5]  
Gushchin A. K., 2008, VESTN SAMGU YESTESTV, P76
[6]  
Gushchin A. K., 1980, MATH USSR SB, V36, P1
[7]   ON THE CONTINUITY OF THE SOLUTIONS OF A CLASS OF NONLOCAL PROBLEMS FOR AN ELLIPTIC EQUATION [J].
GUSHCHIN, AK ;
MIKHAILOV, VI .
SBORNIK MATHEMATICS, 1995, 186 (1-2) :197-219
[8]   ON THE EXISTENCE OF BOUNDARY-VALUES OF SOLUTIONS OF AN ELLIPTIC EQUATION [J].
GUSHCHIN, AK ;
MIKHAILOV, VP .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 73 (01) :171-194
[9]  
Littlewood JE, 1937, P LOND MATH SOC, V42, P52
[10]  
Littlewood JE, 1937, P LOND MATH SOC, V43, P105