Study of InAs/GaAs(001) nanoisland growth process by in-situ and real-time X-ray diffraction

被引:0
|
作者
Takahasi, Masamitu [1 ]
Kaizu, Toshiyuki [1 ]
Mizuki, Jun'ichiro [1 ]
机构
[1] Japan Atom Energy Res Inst, Synchrotron Radiat Res Ctr, 1-1-1 Koto, Mikazuki, Hyogo 6795148, Japan
关键词
X-ray scattering; diffraction; and reflection; Growth; Gallium arsenide; Indium arsenide; Nano-particles; quantum dots; and supra-molecules;
D O I
10.1380/ejssnt.2006.426
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A monitoring technique for molecular beam epitaxial growth of InAs/GaAs(001) nanoislands is presented. With the help of a combination of synchrotron radiation and a two-dimensional X-ray detector, X-ray diffraction intensity mappings in the reciprocal space have been measured during growth at a rate of 9.6 s per frame. This method provides information on strain distribution and height of Stranski-Krastanov islands under the in situ condition. Because the use of X-rays is not hindered by ambient pressure, this technique is suitable for industry-oriented applications such as organometallic vapor-phase epitaxy as well.
引用
收藏
页码:426 / 430
页数:5
相关论文
共 50 条
  • [31] In-situ high energy X-ray diffraction study of the elastic response of a metastable β-titanium alloy
    Bhattacharyya, Jishnu J.
    Nair, Sriramya
    Pagan, Darren C.
    Tari, Vahid
    Rollett, Anthony D.
    Agnew, Sean R.
    ACTA MATERIALIA, 2020, 197 : 300 - 308
  • [32] Sulfur-adsorbed GaAs(001) surface studied by X-ray absorption near edge structure, X-ray standing waves and X-ray diffraction
    Sugiyama, M
    Maeyama, S
    SURFACE SCIENCE, 1997, 385 (01) : L911 - L916
  • [33] Two stages of post-growth recovery in molecular beam epitaxy: a surface X-ray diffraction study
    Kaganer, VM
    Braun, W
    Jenichen, B
    Ploog, KH
    SURFACE SCIENCE, 2004, 560 (1-3) : 88 - 102
  • [34] Real-time synchrotron X-ray diffraction study on the isothermal martensite transformation of maraging steel in high magnetic fields
    San Martin, D.
    Jimenez-Melero, E.
    Duffy, J. A.
    Honkimaeki, V.
    van der Zwaag, S.
    van Dijk, N. H.
    JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2012, 45 : 748 - 757
  • [35] In-situ studies of the recrystallization process of CuInS2 thin films by energy dispersive X-ray diffraction
    Thomas, D.
    Mainz, R.
    Rodriguez-Alvarez, H.
    Marsen, B.
    Abou-Ras, D.
    Klaus, M.
    Genzel, Ch
    Schock, H. -W.
    THIN SOLID FILMS, 2011, 519 (21) : 7193 - 7196
  • [36] Real-time X-ray microscopy study of electromigration in microelectronic solder joints
    Ho, Cheng-En
    Yang, Cheng-Hsien
    Lee, Pei-Tzu
    Chen, Chih-Tsung
    SCRIPTA MATERIALIA, 2016, 114 : 79 - 83
  • [37] In-situ X-ray diffraction activation study on an Fe/TiO2 pre-catalyst
    Rayner, Matthew K.
    Billing, David G.
    Coville, Neil J.
    ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2014, 70 : 498 - 509
  • [38] In-situ characterization of water-gas shift catalysts using time-resolved X-ray diffraction
    Rodriguez, Jose A.
    Hanson, Jonathan C.
    Wen, Wen
    Wang, Xianqin
    Brito, Joaquin L.
    Martinez-Arias, Arturo
    Fernandez-Garcia, Marcos
    CATALYSIS TODAY, 2009, 145 (3-4) : 188 - 194
  • [39] Thermal expansion coefficient of carbon-supported Pt nanoparticles: In-situ X-ray diffraction study
    Leontyev, I. N.
    Kulbakov, A. A.
    Allix, M.
    Rakhmatullin, A.
    Kuriganova, A. B.
    Maslova, O. A.
    Smirnova, N. V.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2017, 254 (05):
  • [40] Real-time Observation of Interface Atomic Structures by an Energy-Dispersive Surface X-ray Diffraction
    Shirasawa, Tetsuroh
    E-JOURNAL OF SURFACE SCIENCE AND NANOTECHNOLOGY, 2019, 17 : 155 - 162