TREATING INHOMOGENEOUS ESSENTIAL BOUNDARY-CONDITIONS IN FINITE-ELEMENT METHODS AND THE CALCULATION OF BOUNDARY STRESSES

被引:52
作者
GUNZBURGER, MD [1 ]
HOU, SL [1 ]
机构
[1] YORK UNIV,DEPT MATH & STAT,N YORK M3J 1P3,ONTARIO,CANADA
关键词
INHOMOGENEOUS BOUNDARY CONDITIONS; BOUNDARY STRESSES; FINITE ELEMENT METHODS;
D O I
10.1137/0729024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Finite element approximations of the Stokes and Navier-Stokes equations with inhomogeneous essential boundary conditions are considered. Boundary conditions are enforced weakly by introducing Lagrange multipliers. Optimal error estimates, including some for the stress vector on the boundary, are derived under minimal regularity assumptions on the data. Particular attention is paid to the analysis of a practical choice of finite element spaces for which the Lagrange multiplier calculation uncouples from that for the velocity and pressure. The results are also applicable to general second-order elliptic systems.
引用
收藏
页码:390 / 424
页数:35
相关论文
共 30 条
[1]  
Adams RA., 2003, PURE APPL MATH SOB O, V2
[2]  
Arnold D.N., 1988, ANN SCUOLA NORM-SCI, V15, P169
[3]   FINITE-ELEMENT METHOD WITH PENALTY [J].
BABUSKA, I .
MATHEMATICS OF COMPUTATION, 1973, 27 (122) :221-228
[4]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[5]  
BABUSKA I, 1972, MATH FDN FINITE ELEM, P3
[6]   OPTIMAL FINITE-ELEMENT INTERPOLATION ON CURVED DOMAINS [J].
BERNARDI, C .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1989, 26 (05) :1212-1240
[7]  
BLAIR JJ, 1976, MATH COMPUT, V30, P250, DOI 10.1090/S0025-5718-1976-0398123-3
[8]  
BRAMBLE JH, 1986, MATH COMPUT, V46, P361, DOI 10.1090/S0025-5718-1986-0829613-0
[9]   FINITE DIMENSIONAL APPROXIMATION OF NON-LINEAR PROBLEMS .1. BRANCHES OF NONSINGULAR SOLUTIONS [J].
BREZZI, F ;
RAPPAZ, J ;
RAVIART, PA .
NUMERISCHE MATHEMATIK, 1980, 36 (01) :1-25
[10]  
Ciarlet P. G., 2002, FINITE ELEMENT METHO