Measurements of the shapes of the cyclic, stress-strain hysteresis loops obtained from AISI 1070 (HRC 60) and AISI 52100 (HRC 62) steels subjected to constant stress and constant plastic strain amplitude cycles in torsion are presented. The study examines plastic strain amplitudes in the range of 0.0002 ≤ Δεp/2 ≤ 0.0015, which are similar to the strain amplitudes produced by rolling contact. The effects of a mean stress are also evaluated. The cyclic hardening of the two steels and other changes in the character of the loops during the cyclic life, 34 ≤N f ≤ 2156, are defined. A three-parameter, bilinear, elastic-linear-kinematic-hardening-plastic (ELKP) model is shown to describe the multivalued cyclic stress-strain relations of these steels. The principal material properties of the model, in addition to the elastic modulus, the kinematic yield strength, and the plastic modulus, are evaluated. The ELKP properties define the material's resistance to cyclic plasticity, the loop shape and area (plastic energy dissipation), the conventional cyclic stress-strain curve, the endurance limit, and the rolling contact shakedown pressure. The implications for rolling contact are discussed. © 1990 The Metallurgical of Society of AIME.