ABELIAN CONNECTION IN FEDOSOV DEFORMATION QUANTIZATION

被引:0
|
作者
Tosiek, Jaromir [1 ]
机构
[1] Tech Univ Lodz, Inst Phys, Ul Wolczanska 219, PL-93005 Lodz, Poland
关键词
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
General properties of an Abelian connection in Fedosov deformation quantization are investigated. The definition and the criterion of being a finite formal series for an Abelian connection are presented. Examples of finite and infinite Abelian connections are given.
引用
收藏
页码:93 / 102
页数:10
相关论文
共 50 条
  • [41] Quantization is deformation
    Sternheimer, D
    NONCOMMUTATIVE GEOMETRY AND REPRESENTATION THEORY IN MATHEMATICAL PHYSICS, 2005, 391 : 331 - 352
  • [42] Lifts of symplectic diffeomorphisms as automorphisms of a weyl algebra bundle with fedosov connection
    Miyazaki, Naoya
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2007, 4 (04) : 533 - 546
  • [43] Ω-deformation and quantization
    Junya Yagi
    Journal of High Energy Physics, 2014
  • [44] Ω-deformation and quantization
    Yagi, Junya
    JOURNAL OF HIGH ENERGY PHYSICS, 2014, (08):
  • [45] NEW VIEW ON QUANTIZATION - QUANTIZATION AS A DEFORMATION
    NIEDERLE, J
    TOLAR, J
    CESKOSLOVENSKY CASOPIS PRO FYSIKU SEKCE A, 1978, 28 (03): : 258 - 263
  • [46] Stochastic Quantization of an Abelian Gauge Theory
    Shen, Hao
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2021, 384 (03) : 1445 - 1512
  • [47] Mirror symmetry and quantization of Abelian varieties
    Manin, YI
    MODULI OF ABELIAN VARIETIES, 2000, 195 : 231 - 254
  • [48] Stochastic Quantization of an Abelian Gauge Theory
    Hao Shen
    Communications in Mathematical Physics, 2021, 384 : 1445 - 1512
  • [49] Graphene and non-Abelian quantization
    Falomir, H.
    Gamboa, J.
    Loewe, M.
    Nieto, M.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (13)
  • [50] QUANTIZATION BY NON-ABELIAN PROMEASURES
    CLARKE, CJS
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (20): : 4463 - 4470