ON THE EXISTENCE OF WEAK GREEDY MATCHING HEURISTICS

被引:2
作者
GRIGORIADIS, MD
KALANTARI, B
LAI, CY
机构
[1] Rutgers Univ, New Brunswick, NJ, USA, Rutgers Univ, New Brunswick, NJ, USA
关键词
* This research was supported in part by the lqational Science Foundation under Grant no. MCS-8113503;
D O I
10.1016/0167-6377(86)90078-7
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
13
引用
收藏
页码:201 / 205
页数:5
相关论文
共 13 条
[1]   A SURVEY OF HEURISTICS FOR THE WEIGHTED MATCHING PROBLEM [J].
AVIS, D .
NETWORKS, 1983, 13 (04) :475-493
[2]  
BENTLEY JL, 1980, J ALGORITHMS, V0001, P00301
[3]  
BURKARD RE, 1980, LECTURE NOTES EC MAT, V184
[4]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[5]   MAXIMUM MATCHING AND A POLYHEDRON WITH O'1-VERTICES [J].
EDMONDS, J .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS SECTION B-MATHEMATICS AND MATHEMATICAL, 1965, B 69 (1-2) :125-+
[6]  
Gabow H., 1973, THESIS STANFORD U ST
[7]   A LOWER BOUND TO THE COMPLEXITY OF EUCLIDEAN AND RECTILINEAR MATCHING ALGORITHMS [J].
GRIGORIADIS, MD ;
KALANTARI, B .
INFORMATION PROCESSING LETTERS, 1986, 22 (02) :73-76
[8]  
GUIBAS LJ, 1983, 15TH P ANN ACM S THE, P221
[9]   LINEAR-TIME APPROXIMATION ALGORITHMS FOR FINDING THE MINIMUM-WEIGHT PERFECT MATCHING ON A PLANE [J].
IRI, M ;
MUROTA, K ;
MATSUI, S .
INFORMATION PROCESSING LETTERS, 1981, 12 (04) :206-209
[10]  
Lawler E.L., 1976, COMBINATORIAL OPTIMI