The hyperspace of finite subsets of a stratifiable space

被引:0
|
作者
Cauty, R
Guo, BL
Sakai, K
机构
[1] UNIV PARIS 06,F-75252 PARIS,FRANCE
[2] UNIV TSUKUBA,INST MATH,TSUKUBA,IBARAKI 305,JAPAN
关键词
hyperspace; the Vietoris topology; stratifiable space; AR(S); ANR(S); 2-hyper-locally-connected;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is shown that the hyperspace of non-empty finite subsets of a space X is an ANR (an AR) for stratifiable spaces if and only if X is a 2-hyper-locally-connected (and connected) stratifiable space.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 35 条
  • [1] The hyperspace of closed connected subsets of a Euclidean space
    Goodykoontz, JT
    Rhee, CJ
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 157 - 162
  • [2] On a hyperspace of compact subsets which is homeomorphic to a non-separable Hilbert space
    Koshino, Katsuhisa
    TOPOLOGY AND ITS APPLICATIONS, 2016, 206 : 166 - 170
  • [3] The Vietoris hyperspace of finite sets of Erdos space
    Zaragoza, Alfredo
    TOPOLOGY AND ITS APPLICATIONS, 2022, 310
  • [4] Noncut subsets of the hyperspace of subcontinua
    Camargo, Javier
    Maya, David
    Pellicer-Covarrubias, Patricia
    TOPOLOGY AND ITS APPLICATIONS, 2022, 305
  • [5] Hyperspace for space travel
    Fontana, Giorgio
    Murad, Paul
    Baker, Robert M. L., Jr.
    SPACE TECHNOLOGY AND APPLICATIONS INTERNATIONAL FORUM - STAIF 2007, 2007, 880 : 1117 - +
  • [7] Space and hyperspace in fictional dimension
    Afrougheh, Shahram
    Azizi, Kyoumars
    Safari, Hossein
    AKDENIZ LANGUAGE STUDIES CONFERENCE, 2013, 70 : 1394 - 1397
  • [8] The hyperspace of a compact space .1
    Bell, M
    TOPOLOGY AND ITS APPLICATIONS, 1996, 72 (01) : 39 - 46
  • [9] HYPERSPACE OF FINITE UNIONS OF CONVERGENT SEQUENCES
    Lin, JingLing
    Lin, Fucai
    Liu, Chuan
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2021, 58 (04) : 433 - 456
  • [10] Bornological Convergences on the Hyperspace of a Uniformizable Space
    Marco Rosa
    Paolo Vitolo
    Set-Valued and Variational Analysis, 2016, 24 : 597 - 618