Note on thermocouple measurements for laminar-turbulent transition phenomena in pipe flow

被引:4
|
作者
Cheng, KC
Ting, DSK
机构
[1] Mechanical Engineering Department, University of Alberta, Edmonton, AB
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1080/08916159508946502
中图分类号
O414.1 [热力学];
学科分类号
摘要
The possibility of using a fine thermocouple to detect the onset of unsteady motion in slightly heated gases is explored. Signals from thermocouple measurements using Chromel-Constantan thermocouples (wire diameter = 12.7 mu m) in slightly heated air flows in a horizontal pipe (pipe diameter 50.8 mm, length/diameter = 29.5) are analyzed to study the laminar-turbulent transition phenomena for Reynolds numbers varying from 1,500 to 4,500 with an increment of 500. The original signal from the thermocouple, fast Fourier transform (FFT) of the original signal, and filtered FFT signals in frequency and time domains are presented for each Reynolds number with temperature differences Delta T = 5 degrees C and 10 degrees C (Delta T = temperature difference between pipe center and room air). The critical Reynolds number is found to occur between Re = 2,500 and 3,000. The secondary flow caused by buoyancy forces is found to suppress the onset of turbulence. Without slightly heating the air, no temperature fluctuations are detected. The experimental data confirm the applicability of the method in studying the laminar-turbulent transition phenomena in pipe flow. The possible difficulties in stability analysis are pointed out.
引用
收藏
页码:209 / 228
页数:20
相关论文
共 50 条
  • [31] Specificity of laminar-turbulent transition in upward monodispersed microbubbly flow
    L. S. Timkin
    R. S. Gorelik
    Technical Physics Letters, 2010, 36 : 493 - 495
  • [32] Numerical analysis of laminar-turbulent transition in a circular pipe with periodic inflow perturbations
    Nikitin N.V.
    Fluid Dynamics, 2001, 36 (2) : 204 - 216
  • [33] CALCULATION OF MINIMUM CRITICAL REYNOLDS NUMBER FOR LAMINAR-TURBULENT TRANSITION IN PIPE FLOWS
    Kanda, Hidesada
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 168 - 186
  • [34] LAMINAR-TURBULENT TRANSITION IN SMOOTH TUBES
    ROTHFUS, RR
    PRENGLE, RS
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1952, 44 (07): : 1683 - 1688
  • [35] LAMINAR-TURBULENT TRANSITION IN CONCENTRIC ANNULI
    FUJIMURA, K
    SHIINA, Y
    JOURNAL OF THE ATOMIC ENERGY SOCIETY OF JAPAN, 1986, 28 (06): : 524 - 526
  • [36] A statistical model of laminar-turbulent transition
    Rubinstein, R
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1109 - 1111
  • [37] On laminar-turbulent transition in nanofluid flows
    V. Ya. Rudyak
    A. V. Minakov
    D. V. Guzey
    V. A. Zhigarev
    M. I. Pryazhnikov
    Thermophysics and Aeromechanics, 2016, 23 : 773 - 776
  • [38] ON THE LAMINAR-TURBULENT TRANSITION OF VELOCITY PULSES
    TSANGARIS, S
    LEITER, E
    BIOMEDIZINISCHE TECHNIK, 1982, 27 (10): : 228 - 234
  • [39] On laminar-turbulent transition in nanofluid flows
    Rudyak, V. Ya.
    Minakov, A. V.
    Guzey, D. V.
    Zhigarev, V. A.
    Pryazhnikov, M. I.
    THERMOPHYSICS AND AEROMECHANICS, 2016, 23 (05) : 773 - 776
  • [40] The laminar-turbulent transition in a fibre laser
    Turitsyna, E. G.
    Smirnov, S. V.
    Sugavanam, S.
    Tarasov, N.
    Shu, X.
    Babin, S. A.
    Podivilov, E. V.
    Churkin, D. V.
    Falkovich, G.
    Turitsyn, S. K.
    NATURE PHOTONICS, 2013, 7 (10) : 783 - 786