WAVE-FUNCTION SOLUTION OF PLANE-WAVE SCATTERING BY AN ANISOTROPIC CIRCULAR-CYLINDER

被引:6
作者
WU, XB
REN, W
机构
[1] China Research Institute of Radiowave Propagation, Xinxiang, Henan, 453003
[2] Department of Applied Mathematics, University of Electronic Science and Technology of China, Chengdu, Sichuan
关键词
SCATTERING; ANISOTROPIC MEDIA; WAVE FUNCTION; T-MATRIX;
D O I
10.1002/mop.4650080114
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
An analytical solution of plane-wave scattering by an anisotropic circular cylinder is given in terms of the wave functions for anisotropic media. The T matrix of an anisotropic circular cylinder is derived. Numerical results in the low-frequency range are used to check our calculations, and those in the resonance region are also presented. (C) 1995 John Wiley & Sons, Inc.
引用
收藏
页码:39 / 42
页数:4
相关论文
共 14 条
[1]  
Graglia R.D., Uslenghi P.L.E., Electromagnetic Scattering from Anisotropic Materials, Part II: Computer Code and Numerical Results in Two‐Dimensions, IEEE Transactions on Antennas and Propagation, 35 AP, 2, pp. 225-232, (1987)
[2]  
Wu R.B., Chen C.H., Variational Reaction Formulation of Scattering for Anisotropic Dielectric Cylinders, IEEE Trans. Antennas Propagat., 34 AP, 5, pp. 640-646, (1986)
[3]  
Monzon J.C., Damaskos N.J., Two‐Dimensional Scattering by a Homogeneous Anisotropic Rod, IEEE Transactions on Antennas and Propagation, 34 AP, 10, pp. 1243-1249, (1986)
[4]  
Monzon J.C., On a Surface Integral Representation for Homogeneous Anisotropic Regions: Two‐Dimensional Case, IEEE Trans. Antennas Propagat., 36 AP, 10, pp. 1401-1406, (1988)
[5]  
Beker B., Umashanker K.R., Taflove A., Numerical Analysis and Validation of the Combined Field Surface Integral Equations for Electromagnetic Scattering by Arbitrary Shaped Two‐Dimensional Anisotropic Objects, IEEE Trans. Antennas Propagat., 37 AP, 12, pp. 1573-1581, (1989)
[6]  
Rappaport C.M., McCartin B.J., FDFD Analysis of Electromagnetic Scattering in Anisotropic Media Using Unconstrained Triangular Meshes, IEEE Transactions on Antennas and Propagation, 39 AP, 3, pp. 345-349, (1991)
[7]  
Chew W.C., An N<sup>2</sup> Algorithm for the Multiple Scattering Solution of N Scatterers, Microwave Opt. Technol. Lett., 2, 11, pp. 380-383, (1989)
[8]  
Chew W.C., Wang Y.M., A Fast Algorithm for Solution of a Scattering Problem Using a Recursive Aggregate Tau Matrix Method, Microwave Opt. Technol. Lett., 3, 5, pp. 164-169, (1990)
[9]  
Wang Y.M., Chew W.C., Application of the Fast Recursive Algorithm to a Large Inhomogeneous Scatterer for TM Polarization, Microwave Opt. Technol. Lett., 4, 4, pp. 155-157, (1991)
[10]  
Richmond J.H., Scattering from a Dielectric Cylinder of Arbitrary Cross Section Shape, IEEE Transactions on Antennas and Propagation, 13 AP, 3, pp. 334-341, (1965)