A CHOLESKY DUAL METHOD FOR PROXIMAL PIECEWISE-LINEAR PROGRAMMING

被引:33
作者
KIWIEL, KC
机构
[1] Systems Research Institute, Warsaw, PL-01-447
关键词
D O I
10.1007/s002110050065
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A quadratic programming method is given for minimizing a sum of piecewise linear functions and a proximal quadratic term, subject to simple bounds on variables. It may be used for search direction finding in nondifferentiable optimization algorithms. An efficient implementation is described that updates a Cholesky factorization of active constraints and provides good accuracy via iterative refinement. Numerical experience is reported for some large problems.
引用
收藏
页码:325 / 340
页数:16
相关论文
共 39 条
[1]  
[Anonymous], 1989, HDB OPERATIONS RES M, DOI [DOI 10.1016/S0927-0507(89)01008-X, 10.1016/s0927-0507(89)01008-x]
[2]   ON THE AUGMENTED SYSTEM APPROACH TO SPARSE LEAST-SQUARES PROBLEMS [J].
ARIOLI, M ;
DUFF, IS ;
DERIJK, PPM .
NUMERISCHE MATHEMATIK, 1989, 55 (06) :667-684
[3]   EQUIVALENCE OF SOME QUADRATIC-PROGRAMMING ALGORITHMS [J].
BEST, MJ .
MATHEMATICAL PROGRAMMING, 1984, 30 (01) :71-87
[4]  
BJORCK A, 1992, SIAM J MATRIX ANAL A, V13, P176
[5]   STABILITY ANALYSIS OF THE METHOD OF SEMINORMAL EQUATIONS FOR LINEAR LEAST-SQUARES PROBLEMS [J].
BJORCK, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 :31-48
[7]  
Bjorck A., 1990, HDB NUMERICAL ANAL, V1, P465, DOI 10.1016/S1570-8659(05)80036-5
[8]  
Dongarra Jack J, 1979, LINPACK USERS GUIDE
[9]  
FLETCHER R, 1991, NA135 U DUND NUM AN
[10]  
FLETCHER R, 1989, PITMAN RES NOTES MAT, V228, P89