RESIDUAL FINITENESS OF COLOR LIE-SUPERALGEBRAS

被引:5
作者
BAHTURIN, YA
ZAICEV, MV
机构
关键词
D O I
10.2307/2154315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A (color) Lie superalgebra L over a field K of characteristic not-equal 2, 3 is called residually finite if any of its nonzero elements remains nonzero in a finite-dimensional homomorphic image of L. In what follows we are looking for necessary and sufficient conditions under which all finitely generated Lie superalgebras satisfying a fixed system of identical relations are residually finite. In the case char K = 0 we show that a variety V satisfies this property if and only if V does not contain atl center-by-metabelian algebras and every finitely generated algebra of V has nilpotent commutator subalgebra.
引用
收藏
页码:159 / 180
页数:22
相关论文
共 12 条
[1]  
Bahturin Y. A., 1987, IDENTICAL RELATIONS
[2]  
BAHTURIN YA, 1972, MAT ZAMETKI, V12, P713
[3]  
BAHTURIN YA, 1987, ALGEBRA LOGIKA, V26, P403
[4]   NONCOMMUTATIVE EXTENSIONS OF HILBERT RINGS [J].
CURTIS, CW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1953, 4 (06) :945-955
[5]  
KOSTRIKIN AI, 1990, BURNSIDE
[6]  
MIKHALEV AA, 1985, MAT ZAMETKI, V37, P653
[7]  
MISHCHENKO SP, 1982, THESIS MOSCOW U
[8]  
SCHEUNERT M, 1979, LECTURE NOTES MATH, V716
[10]  
VOLICHENKO IB, 1980, VARIETIES CTR METABE