Insights into the anisotropic spin-S Kitaev chain

被引:10
作者
Gordon, Jacob S. [1 ]
Kee, Hae-Young [1 ,2 ]
机构
[1] Univ Toronto, Dept Phys, Toronto, ON M5S 1A7, Canada
[2] Canadian Inst Adv Res, CIFAR Program Quantum Mat, Toronto, ON M5G 1M1, Canada
来源
PHYSICAL REVIEW RESEARCH | 2022年 / 4卷 / 01期
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
ZERO MODES; DIAGONALIZATION;
D O I
10.1103/PhysRevResearch.4.013205
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, there has been a renewed interest in properties of the higher-spin Kitaev models, especially their low-dimensional analogs with additional interactions. These quasi-one-dimensional systems exhibit rich phase diagrams with symmetry-protected topological phases, Luttinger liquids, hidden order, and higher-rank magnetism. However, the nature of the pure spin -S Kitaev chains is not yet fully understood. Earlier works found a unique ground state with short-ranged correlations for S = 1 and an intriguing double-peak structure in the heat capacity associated with an entropy plateau. To understand the low-energy excitations and thermodynamics for general S, we study the anisotropic spin -S Kitaev chain. Starting from the dimerized limit, we derive an effective low-energy Hamiltonian at finite anisotropy. For half-integer spins we find a trivial effective model, reflecting a nonlocal symmetry protecting the degeneracy, while for integer S we find interactions among the flux degrees of freedom that select a unique ground state. The effective model for integer spins is used to predict the low-energy excitations and thermodynamics, and we make a comparison with the semiclassical limit through linear spin wave theory. Finally, we speculate on the nature of the isotropic limit.
引用
收藏
页数:11
相关论文
共 52 条
[1]   Ground state and low-energy excitations of the Kitaev-Heisenberg two-leg ladder [J].
Agrapidis, Clio Efthimia ;
van den Brink, Jeroen ;
Nishimoto, Satoshi .
PHYSICAL REVIEW B, 2019, 99 (22)
[2]   Ordered states in the Kitaev-Heisenberg model: From 1D chains to 2D honeycomb [J].
Agrapidis, Clio Efthimia ;
van den Brink, Jeroen ;
Nishimoto, Satoshi .
SCIENTIFIC REPORTS, 2018, 8
[3]   Exact results for spin dynamics and fractionalization in the Kitaev model [J].
Baskaran, G. ;
Mandal, Saptarshi ;
Shankar, R. .
PHYSICAL REVIEW LETTERS, 2007, 98 (24)
[4]   Spin-S Kitaev model:: Classical ground states, order from disorder, and exact correlation functions [J].
Baskaran, G. ;
Sen, Diptiman ;
Shankar, R. .
PHYSICAL REVIEW B, 2008, 78 (11)
[5]   Quantum phase transition in the one-dimensional compass model [J].
Brzezicki, Wojciech ;
Dziarmaga, Jacek ;
Oles, Andrzej M. .
PHYSICAL REVIEW B, 2007, 75 (13)
[6]   Nonlocal string order parameter in the S=1/2 Kitaev-Heisenberg ladder [J].
Catuneanu, Andrei ;
Sorensen, Erik S. ;
Kee, Hae-Young .
PHYSICAL REVIEW B, 2019, 99 (19)
[7]   Kitaev-Heisenberg Model on a Honeycomb Lattice: Possible Exotic Phases in Iridium Oxides A2IrO3 [J].
Chaloupka, Jiri ;
Jackeli, George ;
Khaliullin, Giniyat .
PHYSICAL REVIEW LETTERS, 2010, 105 (02)
[8]  
COLPA JHP, 1986, PHYSICA A, V134, P377, DOI 10.1016/0378-4371(86)90056-7
[9]   DIAGONALIZATION OF QUADRATIC BOSON HAMILTONIAN [J].
COLPA, JHP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 1978, 93 (3-4) :327-353
[10]   DIAGONALIZATION OF THE QUADRATIC BOSON HAMILTONIAN WITH ZERO MODES .2. PHYSICAL [J].
COLPA, JHP .
PHYSICA A, 1986, 134 (02) :417-442