Using electronic health record collected clinical variables to predict medical intensive care unit mortality

被引:43
作者
Calvert, Jacob [1 ]
Mao, Qingqing [1 ]
Hoffman, Jana L. [1 ]
Jay, Melissa [1 ]
Desautels, Thomas [1 ]
Mohamadlou, Hamid [1 ]
Chettipally, Uli [2 ,3 ]
Das, Ritankar [1 ]
机构
[1] Dascena Inc, 1135 Martin Luther King Dr, Hayward, CA 94541 USA
[2] Kaiser Permanente, South San Francisco Med Ctr, San Francisco, CA USA
[3] Univ Calif San Francisco, Dept Emergency Med, San Francisco, CA 94143 USA
来源
ANNALS OF MEDICINE AND SURGERY | 2016年 / 11卷
基金
美国国家科学基金会;
关键词
Clinical decision support systems; Mortality prediction; Electronic health records; Medical informatics;
D O I
10.1016/j.amsu.2016.09.002
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Clinical decision support systems are used to help predict patient stability and mortality in the Intensive Care Unit (ICU). Accurate patient information can assist clinicians with patient management and in allocating finite resources. However, systems currently in common use have limited predictive value in the clinical setting. The increasing availability of Electronic Health Records (EHR) provides an opportunity to use medical information for more accurate patient stability and mortality prediction in the ICU. Objective: Develop and evaluate an algorithm which more accurately predicts patient mortality in the ICU, using the correlations between widely available clinical variables from the EHR. Methods: We have developed an algorithm, AutoTriage, which uses eight common clinical variables from the EHR to assign patient mortality risk scores. Each clinical variable produces a subscore, and combinations of two or three discretized clinical variables also produce subscores. A combination of weighted subscores produces the overall score. We validated the performance of this algorithm in a retrospective study on the MIMIC III medical ICU dataset. Results: AutoTriage 12 h mortality prediction yields an Area Under Receiver Operating Characteristic value of 0.88 (95% confidence interval 0.86 to 0.88). At a sensitivity of 80%, AutoTriage maintains a specificity of 81% with a diagnostic odds ratio of 16.26. Conclusions: Through the multidimensional analysis of the correlations between eight common clinical variables, AutoTriage provides an improvement in the specificity and sensitivity of patient mortality prediction over existing prediction methods. (C) 2016 The Authors. Published by Elsevier Ltd on behalf of IJS Publishing Group Ltd.
引用
收藏
页码:52 / 57
页数:6
相关论文
共 20 条
[1]   A computational approach to mortality prediction of alcohol use disorder inpatients [J].
Calvert, Jacob ;
Mao, Qingqing ;
Rogers, Angela J. ;
Barton, Christopher ;
Jay, Melissa ;
Desautels, Thomas ;
Mohamadlou, Hamid ;
Jan, Jasmine ;
Das, Ritankar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 75 :74-79
[2]   High-performance detection and early prediction of septic shock for alcohol-use disorder patients [J].
Calvert, Jacob ;
Desautels, Thomas ;
Chettipally, Uli ;
Barton, Christopher ;
Hoffman, Jana ;
Jay, Melissa ;
Mao, Qingqing ;
Mohamadlou, Hamid ;
Das, Ritankar .
ANNALS OF MEDICINE AND SURGERY, 2016, 8 :50-55
[3]   Discharge recommendation based on a novel technique of homeostatic analysis [J].
Calvert, Jacob S. ;
Price, Daniel A. ;
WBarton, Christopher ;
Chettipally, Uli K. ;
Das, Ritankar .
JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2017, 24 (01) :24-29
[4]   A computational approach to early sepsis detection [J].
Calvert, Jacob S. ;
Price, Daniel A. ;
Chettipally, Uli K. ;
Barton, Christopher W. ;
Feldman, Mitchell D. ;
Hoffman, Jana L. ;
Jay, Melissa ;
Das, Ritankar .
COMPUTERS IN BIOLOGY AND MEDICINE, 2016, 74 :69-73
[5]  
Celi LA, JMIR MED INF, V2, pe13
[6]  
Ghose S, 23 AUSTR NAT HLTH IN
[7]   MIMIC-III, a freely accessible critical care database [J].
Johnson, Alistair E. W. ;
Pollard, Tom J. ;
Shen, Lu ;
Lehman, Li-wei H. ;
Feng, Mengling ;
Ghassemi, Mohammad ;
Moody, Benjamin ;
Szolovits, Peter ;
Celi, Leo Anthony ;
Mark, Roger G. .
SCIENTIFIC DATA, 2016, 3
[8]  
Karafolas S, 2016, CONTRIB ECON, P111, DOI 10.1007/978-3-319-28784-3_6
[9]   Real-Time and Retrospective Health-Analytics-as-a-Service: A Novel Framework [J].
Khazaei, Hamzeh ;
McGregor, Carolyn ;
Eklund, J. Mikael ;
El-Khatib, Khalil .
JMIR MEDICAL INFORMATICS, 2015, 3 (04)
[10]   A NEW SIMPLIFIED ACUTE PHYSIOLOGY SCORE (SAPS-II) BASED ON A EUROPEAN NORTH-AMERICAN MULTICENTER STUDY [J].
LEGALL, JR ;
LEMESHOW, S ;
SAULNIER, F .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1993, 270 (24) :2957-2963