ON THE SUM OF CONSECUTIVE CUBES BEING A PERFECT SQUARE

被引:0
|
作者
STROEKER, RJ
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper estimates of linear forms in elliptic logarithms are applied to solve the problem of determining, for given n greater than or equal to 2, all sets of n consecutive cubes adding up to a perfect square. Use is made of a lower bound of linear forms in elliptic logarithms recently obtained by Sinnou David. Complete sets of solutions are provided for all n between 2 and 50, and for n = 98.
引用
收藏
页码:295 / 307
页数:13
相关论文
共 50 条
  • [31] Preserving the sum of three cubes
    Lewis, GN
    AMERICAN MATHEMATICAL MONTHLY, 2001, 108 (04): : 372 - 373
  • [32] If the Sum of the Squares is the Square of the Sum, . . .
    Stong, Richard
    AMERICAN MATHEMATICAL MONTHLY, 2015, 122 (01): : 76 - 77
  • [33] Arranging Integer Numbers on a Loop Such That the Sum of any Two Adjacent Numbers Is a Perfect Square
    Rathore, Tejmal
    2022 IEEE Region 10 Symposium, TENSYMP 2022, 2022,
  • [34] A Perfect Square
    Hill, Nanci Milone
    LIBRARY JOURNAL, 2012, 137 (07) : 73 - 73
  • [35] SUMS OF A SQUARE AND FIVE CUBES
    WATSON, GL
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1972, 5 (AUG): : 215 - &
  • [36] On the sum of a square and a square of a prime
    Daniel, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2001, 131 : 1 - 22
  • [37] PERFECT PACKING OF D-CUBES
    Joos, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 : 853 - 864
  • [38] FIBONACCI NUMBERS WHICH ARE PERFECT CUBES
    FINKELST.RP
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 275 - &
  • [39] A NOTE ON PERFECT PACKING OF SQUARES AND CUBES
    Januszewski, J.
    Zielonka, L.
    ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 530 - 537
  • [40] A note on perfect packing of squares and cubes
    J. Januszewski
    Ł. Zielonka
    Acta Mathematica Hungarica, 2021, 163 : 530 - 537