CONSTRUCTION OF ASYMPTOTIC SOLUTIONS TO DISCRETE BESSEL EQUATIONS

被引:1
作者
MICKENS, RE
机构
[1] Department of Physics, Clark Atlanta University Atlanta
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
D O I
10.1016/0898-1221(94)00110-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct four finite-difference models for the Bessel differential equation. They correspond respectively, to the standard, Numerov, Mickens-Bamadhani, and combined Numerov-Mickens schemes. The asymptotic behavior of the solutions to these difference equations is calculated and compared to the asymptotic solution of the Bessel differential equation. These results are then related to the problem of numerically integrating Schrodinger type ordinary differential equations.
引用
收藏
页码:219 / 226
页数:8
相关论文
共 25 条
  • [1] Formal theory of irregular linear difference equations
    Birkhoff, GD
    [J]. ACTA MATHEMATICA, 1930, 54 (01) : 205 - 246
  • [2] BIRKHOFF GD, 1932, B SOC MATH FRANCE, V60, P1
  • [3] Butcher J. C., 1987, NUMERICAL ANAL ORDIN
  • [4] FINITE-DIFFERENCE SCHEME TO SOLVE SCHRODINGER-EQUATIONS
    CHEN, RQ
    XU, ZH
    SUN, L
    [J]. PHYSICAL REVIEW E, 1993, 47 (05): : 3799 - 3802
  • [5] DINGLE RB, 1967, APPL SCI RES, V18, P238
  • [6] Hildebrand F.B., 1968, FINITE DIFFERENCE EQ
  • [7] NUMEROV METHOD MAXIMALLY ADAPTED TO THE SCHRODINGER-EQUATION
    IXARU, LG
    RIZEA, M
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1987, 73 (02) : 306 - 324
  • [8] Jain MK, 1984, NUMERICAL SOLUTION D
  • [9] Kahn P. B., 1990, MATH METHODS SCI ENG
  • [10] MERZBACHER E, 1961, QUANTUM MECHANICS