The present study was performed to assess the roles of hepatocellular oxidative damage to DNA and constituents other than DNA in rat liver carcinogenesis caused by a choline-deficient, L-amino acid-defined (CDAA) diet by examining the effects of the antioxidant;N,N'-diphenyl-p-phenylenediamine (DPPD). The parameters used for cellular oxidative damage were the level of 8-hydroxyguanine (8-OHGua) for DNA and that of 2 thiobarbituric acid-reacting substance (TBARS) for constituents other than DNA. A total of 40 male Fischer 344 rats, 6 weeks old, were fed the CDAA diet for 12 weeks with or without DPPD (0.05, 0.10 or 0.20%) or butylated hydroxytoluene (BHT, 0.25%). In the livers of the rats, the numbers and sizes of glutathione S-transferase (EC 2.5.1.18) placental form (GSTP)- and/or gamma-glutamyltransferase (GGT, EC 2.3.2.2)-positive lesions and levels of 8-OHGua and TBARS were determined. The GSTP-positive lesions of 0.08 mm(2) or larger were all stained positively for GGT as well in cross-sectional area, whereas the smaller lesions were generally negative for GGT. DPPD and BHT reduced the size of the GSTP-positive lesions without affecting their total numbers. At the same time, they reduced TBARS generation without affecting 8-OHGua formation in DNA. The present results indicate that oxidative DNA damage (represented by 8-OHGua formation) and damage to constituents other than DNA (represented by TBARS generation) may play different roles in rat liver carcinogenesis caused by the CDAA diet; the former appears to be involved in the induction of phenotypically altered hepatocyte populations while the latter may be related to the growth of such populations.