COORDINATE AND MOMENTUM REPRESENTATIONS OF THE Q-DEFORMED OSCILLATOR AND THEIR INTERPRETATION

被引:7
|
作者
RAJAGOPAL, AK
机构
来源
PHYSICAL REVIEW A | 1993年 / 47卷 / 05期
关键词
D O I
10.1103/PhysRevA.47.R3465
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A derivation of the coordinate representation of the q-deformed oscillator is given. The Hilbert space associated with it is defined on a finite coordinate space y: (-pi/2s,pi/2s), where s is related to the deformation q via q = exp(-s2), with the respective ''coordinate'' and ''momentum'' operators given by X(s) = y - A(s)(y), P(s) = -id/dy - iA(s)(y), where A(s)(y) = 1/2d lnsigma(s)(y)/dy, sigma(s), being a measure in this space. The commutation rule obeyed by them is X(s)P(s)-P(s)X(s) = iHBAR(s)(y) = i{1-d A(s)/dy}. After constructing a suitable representation in the momentum space, we also set up the Wigner distribution function in this phase space. A brief discussion of these results and their interpretation are given.
引用
收藏
页码:R3465 / R3467
页数:3
相关论文
共 50 条
  • [41] Convergent perturbation theory for a q-deformed anharmonic oscillator
    Dick R.
    Pollok-Narayanan A.
    Steinacker H.
    Wess J.
    The European Physical Journal C - Particles and Fields, 1999, 7 (2): : 363 - 368
  • [42] The Wigner function of a q-deformed harmonic oscillator model
    Jafarov, E. I.
    Lievens, S.
    Nagiyev, S. M.
    Van der Jeugt, J.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (20) : 5427 - 5441
  • [43] Factorization and q-deformed algebra of a quantum anharmonic oscillator
    Bak, D
    Kim, SP
    Kim, SK
    Soh, KS
    Yee, JH
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 1999, 34 (05) : 470 - 472
  • [44] The temperature effect on the q-deformed optomechanical oscillator motion
    Batouli, J.
    Rfifi, S.
    El Baz, M.
    Boulezhar, A.
    MODERN PHYSICS LETTERS A, 2024, 39 (05)
  • [45] Spectral inverse problem for q-deformed harmonic oscillator
    Bera, P. K.
    Datta, J.
    PRAMANA-JOURNAL OF PHYSICS, 2006, 67 (06): : 1023 - 1035
  • [46] MODELING OF q-DEFORMED HARMONIC OSCILLATOR ON QUANTUM COMPUTER
    Samar, M.
    JOURNAL OF PHYSICAL STUDIES, 2023, 27 (04):
  • [47] Irreducibility and compositeness in q-deformed harmonic oscillator algebras
    Galetti, D
    Lunardi, JT
    Pimentel, BM
    Ruzzi, M
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2002, 41 (09) : 1673 - 1687
  • [48] Irreducibility and Compositeness in q-Deformed Harmonic Oscillator Algebras
    D. Galetti
    J. T. Lunardi
    B. M. Pimentel
    M. Ruzzi
    International Journal of Theoretical Physics, 2002, 41 : 1673 - 1687
  • [49] ON Q-DEFORMED OSCILLATOR-SYSTEMS AND THE Q-OSCILLATOR ALGEBRA HQ(4)
    YAN, H
    PHYSICS LETTERS B, 1991, 262 (04) : 459 - 462
  • [50] Convergent perturbation theory for a q-deformed anharmonic oscillator
    Dick, R
    Pollok-Narayanan, A
    Steinacker, H
    Wess, J
    EUROPEAN PHYSICAL JOURNAL C, 1999, 7 (02): : 363 - 368