A non-amenable groupoid whose maximal and reduced C*-algebras are the same

被引:23
作者
Willett, Rufus [1 ]
机构
[1] Univ Hawaii Manoa, Dept Math, 2565 McCarthy Mall, Honolulu, HI 96822 USA
来源
MUENSTER JOURNAL OF MATHEMATICS | 2015年 / 8卷 / 01期
关键词
D O I
10.17879/65219671638
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct a non-amenable locally compact groupoid whose maximal and reduced C*-algebras are the same. Our example is based closely on constructions used by Higson, Lafforgue, and Skandalis in their work on counterexamples to the Baum-Connes conjecture. It is a bundle of countable groups over the one-point compactification of the natural numbers, and is Hausdorff, second countable and etale.
引用
收藏
页码:241 / 252
页数:12
相关论文
共 18 条
[1]  
Anantharaman-Delaroche C., 2000, MONOGRAPHIES ENSEIGN, V36
[2]   On the full C*-algebras of arithmetic groups and the congruence subgroup problem [J].
Bekka, MB .
FORUM MATHEMATICUM, 1999, 11 (06) :705-715
[3]  
Brown N. P., 2008, GRADUATE STUDIES MAT, V88, DOI DOI 10.1090/GSM/088
[4]  
GARFIELD E, 1991, J OPERATOR THEORY, V25, P3
[5]   Counterexamples to the Baum-Connes conjecture [J].
Higson, N ;
Lafforgue, V ;
Skandalis, G .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2002, 12 (02) :330-354
[6]   MEANS AND FOLNER CONDITION ON LOCALLY COMPACT GROUPS [J].
HULANICK.A .
STUDIA MATHEMATICA, 1966, 27 (02) :87-&
[7]  
Kerr D., 2011, C ALGEBRAS TOPOLOGIC
[8]  
Lubotzky Alexander, 2004, CONT MATH, V347, P173, DOI [10.1090/conm/347/06272, DOI 10.1090/C0NM/347/06272]
[9]  
Lubotzky Alexander, 1994, MODERN BIRKHAUSER CL, V125, DOI 10.1007/978-3-0346-0332-4
[10]   A CHARACTERIZATION OF AMENABILITY OF GROUP ACTIONS ON C*-ALGEBRAS [J].
Matsumura, Masayoshi .
JOURNAL OF OPERATOR THEORY, 2014, 72 (01) :41-47