ON THE POLYNOMIAL INVARIANTS OF THE ELASTICITY TENSOR

被引:56
作者
BOEHLER, JP [1 ]
KIRILLOV, AA [1 ]
ONAT, ET [1 ]
机构
[1] YALE UNIV,NEW HAVEN,CT 06520
关键词
7;
D O I
10.1007/BF00041187
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We consider the old problem of finding a basis of polynomial invariants of the fourth rank tensor C of elastic moduli of an anisotropic material. Decomposing C into its irreducible components we reduce this problem to finding joint invariants of a triplet (a, b, D), where a and b are traceless symmetric second rank tensors, and D is completely symmetric and traceless fourth rank tensor (D is-an-element-of T4ss). We obtain by reinterpreting the results of classical invariant theory a polynomial basis of invariants for D which consists of 9 invariants of degrees 2 to 10 in components of D. Finally we use this result together with a well-known description of joint invariants of a number of second-rank symmetric tensors to obtain joint invariants of the triplet (a, b, D) for a generic D.
引用
收藏
页码:97 / 110
页数:14
相关论文
共 8 条
[1]   IRREDUCIBLE REPRESENTATIONS FOR ISOTROPIC SCALAR FUNCTIONS [J].
BOEHLER, JP .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (06) :323-327
[2]  
GRACE JH, 1903, ALGEBRA INVARIANTS
[4]  
SYLVESTER J, 1909, COLLECTED MATH PAPER, V3, P481
[5]  
Sylvester J. J., 1909, COLLECTED MATH PAPER, V3, P283
[6]  
TETSUJI S, 1967, AM J MATH, V89, P1022
[7]  
VONGALL, 1880, MATH ANN, V17, P31
[8]  
Weyl H., 1946, CLASSICAL GROUPS