MODEL PREDICTIVE CONTROL OF CONSTRAINED WITH NON LINEAR STOCHASTIC PARAMETERS SYSTEMS

被引:0
作者
Dombrovskii, V. V. [1 ,2 ,3 ]
Obyedko, T. U. [4 ]
机构
[1] Tomsk State Univ, Econ Dept, Tomsk, Russia
[2] Tomsk State Univ, Econ Dept, Tech Sci, Tomsk, Russia
[3] Tomsk State Univ, Econ Dept, Dept Math Methods & Informat Technol Econ, Tomsk, Russia
[4] Tomsk State Univ, Fac Appl Math & Cybernet, Tomsk, Russia
来源
VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE | 2011年 / 16卷 / 03期
关键词
discrete time control systems; model predictive control (MPC); non-linear stochastic parameters; multiplicative noise; constraints; computational methods; stochastic control;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we consider the model predictive control problem of discrete-time systems with non-linear random depended parameters for which only the first and second conditional distribution moments, the conditional autocorrelations and the mutual cross-correlations are known. The open-loop feedback control strategy is derived subject to hard constraints on the control variables. The approach is advantageous because the rich arsenal of methods of non-linear estimation or the results of nonparametric estimation may be used directly for describing characteristics of random parameter sequences.
引用
收藏
页码:5 / 12
页数:8
相关论文
共 22 条