PARALLEL MINIMAL NORM METHOD FOR TRIDIAGONAL LINEAR-SYSTEMS

被引:3
作者
DEKKER, E [1 ]
DEKKER, L [1 ]
机构
[1] TECH UNIV DELFT,FAC TECH MATH & COMP SCI,2628 CD DELFT,NETHERLANDS
关键词
PARALLEL ALGORITHMS; PARALLEL MINIMAL NORM METHOD; TRIDIAGONAL LINEAR SYSTEMS; ROW-ORIENTED ORTHOGONALIZATION; STRUCTURAL ORTHOGONALITY;
D O I
10.1109/12.392854
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Based on the parallel minimal norm method an algorithm is derived to solve tridiagonal linear systems with a high degree of parallelism No conditions need to be posed with respect to the system Experiments indicate that the numerical stability of the algorithm is similar to Gaussian elimination with partial pivoting.
引用
收藏
页码:942 / 946
页数:5
相关论文
共 13 条
[1]  
AHO AV, 1974, DESIGN ANAL COMPUTER, P60
[2]   DIVIDE-AND-CONQUER - A PARALLEL ALGORITHM FOR THE SOLUTION OF A TRIDIAGONAL LINEAR-SYSTEM OF EQUATIONS [J].
BONDELI, S .
PARALLEL COMPUTING, 1991, 17 (4-5) :419-434
[3]  
DEKKER E, 1989, SYST ANAL MODEL SIM, V6, P643
[4]   A RECURSIVE DOUBLING-ALGORITHM FOR SOLUTION OF TRIDIAGONAL SYSTEMS ON HYPERCUBE MULTIPROCESSORS [J].
EGECIOGLU, O ;
KOC, CK ;
LAUB, AJ .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1989, 27 (1-2) :95-108
[5]  
GOLUB GH, 1983, MATRIX COMPUTATIONS, P92
[6]   A PROJECTION METHOD FOR SOLVING NONSYMMETRIC LINEAR-SYSTEMS ON MULTIPROCESSORS [J].
KAMATH, C ;
SAMEH, A .
PARALLEL COMPUTING, 1989, 9 (03) :291-312
[7]  
Lambiotte J. J. Jr., 1975, ACM Transactions on Mathematical Software, V1, P308, DOI 10.1145/355656.355658
[8]   SOLUTION OF PARTIAL-DIFFERENTIAL EQUATIONS ON VECTOR AND PARALLEL COMPUTERS [J].
ORTEGA, JM ;
VOIGT, RG .
SIAM REVIEW, 1985, 27 (02) :149-240
[9]  
STONE HS, 1973, J ACM, V20, P87
[10]   EFFICIENT TRIDIAGONAL SOLVERS ON MULTICOMPUTERS [J].
SUN, XH ;
ZHANG, H ;
NI, LM .
IEEE TRANSACTIONS ON COMPUTERS, 1992, 41 (03) :286-296