A GENERAL TIME-DEPENDENT INVARIANT FOR AND INTEGRABILITY OF THE QUADRATIC SYSTEM

被引:1
作者
HUA, DD
CAIRO, L
FEIX, MR
机构
来源
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 1994年 / 444卷 / 1922期
关键词
D O I
10.1098/rspa.1994.0044
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We derive a general time-dependent invariant (first integral) for the quadratic system (QS) that requires only one condition on the coefficients of the QS. The general invariant could yield asymptotic behaviour of phase-space trajectories. With more conditions imposed on the coefficients, the general invariant reduces to polynomial form and is equivalent to polynomial invariants found using a direct method. For the special case of a linear polynomial invariant where one of the variables is analytically invertible, the solution of the QS is reduced to a quadrature.
引用
收藏
页码:643 / 650
页数:8
相关论文
共 12 条