ANALYSIS OF 4 NUMERICAL SCHEMES FOR A NONLINEAR KLEIN-GORDON EQUATION

被引:107
作者
JIMENEZ, S [1 ]
VAZQUEZ, L [1 ]
机构
[1] UNIV COMPULTENSE,FAC CIENCIAS FIS,DEPT FIS TEOR,E-28040 MADRID,SPAIN
关键词
D O I
10.1016/0096-3003(90)90091-G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare the properties of four explicit finite difference schemes used to integrate the nonlinear Klein-Gordon equation φ{symbol}tt-φ{symbol}xx+f(φ{symbol})=0. It turns out that the energy conserving scheme is the most suitable to study the long time behavior of the solutions. The same result is found for the special case of no spatial dependence. © 1990.
引用
收藏
页码:61 / 94
页数:34
相关论文
共 18 条
[1]   SOLITARY WAVE COLLISIONS [J].
ABLOWITZ, MJ ;
KRUSKAL, MD ;
LADIK, JF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1979, 36 (03) :428-437
[2]  
BREZIS H, 1981, RES NOTES MATH, V46, P3
[3]   NUMERICAL COMPUTATIONS OF LIAPUNOV EXPONENTS FOR A DISCRETIZED ONE-DIMENSIONAL NON-LINEAR KLEIN-GORDON EQUATION [J].
CARAVATI, G ;
GIORGILLI, A ;
GALGANI, L .
LETTERE AL NUOVO CIMENTO, 1983, 38 (11) :385-389
[4]  
CHANNELL PJ, 1988, SYMPLECTIC INTEGRATI
[5]  
Dodd R., 1982, SOLITON NONLINEAR WA
[6]   APPROACH TO EQUILIBRIUM IN A CHAIN OF NON-LINEAR OSCILLATORS [J].
FUCITO, F ;
MARCHESONI, F ;
MARINARI, E ;
PARISI, G ;
PELITI, L ;
RUFFO, S ;
VULPIANI, A .
JOURNAL DE PHYSIQUE, 1982, 43 (05) :707-713
[7]  
JIMENEZ S, 1988, THESIS U COMPLUTENSE
[8]  
KANG F, IN PRESS J COMPUT MA
[9]  
MARCHESONI F, COMMUNICATION
[10]   GENERATING-FUNCTIONS FOR NONCANONICAL MAPS [J].
MENDES, RV .
LETTERS IN MATHEMATICAL PHYSICS, 1986, 11 (04) :289-292