WAVELETS AND SELF-AFFINE TILINGS

被引:55
作者
STRICHARTZ, RS [1 ]
机构
[1] CORNELL UNIV,DEPT MATH,ITHACA,NY 14853
关键词
WAVELETS; MULTIRESOLUTION ANALYSIS; SELF-AFFINE TILING;
D O I
10.1007/BF01198010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a self-affine periodic tiling of R(n) we construct an associated r-regular multiresolution analysis and wavelet basis with the same lattice of translations and scaling matrix as the tiling.
引用
收藏
页码:327 / 346
页数:20
相关论文
共 20 条
[2]   GENERATING SPECIAL MARKOV PARTITIONS FOR HYPERBOLIC TORAL AUTOMORPHISMS USING FRACTALS [J].
BEDFORD, T .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1986, 6 :325-333
[3]   WAVELETS, MULTISCALE ANALYSIS AND QUADRATURE MIRROR FILTERS [J].
COHEN, A .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1990, 7 (05) :439-459
[4]  
COHEN A, NONSEPARABLE BIDIMEN
[5]  
COHEN A, 1983, CONSTR APPROX, V9, P209
[6]  
DAUBECHIES I, 1992, CBMS NSF C APPLIED M, V61
[7]   RECURRENT SETS [J].
DEKKING, FM .
ADVANCES IN MATHEMATICS, 1982, 44 (01) :78-104
[8]   REPLICATING SUPERFIGURES AND ENDOMORPHISMS OF FREE GROUPS [J].
DEKKING, FM .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1982, 32 (03) :315-320
[9]  
GROCHENIG K, IN PRESS T IEEE
[10]  
GROCHENIG K, SELF SIMILAR LATTICE