ON ONE SOBOLEV TYPE MATHEMATICAL MODEL IN QUASI-BANACH SPACES

被引:0
作者
Zamyshlyaeva, A. A. [1 ]
Al Helli, H. M. [1 ]
机构
[1] South Ural State Univ, Chelyabinsk, Russia
来源
BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE | 2015年 / 8卷 / 01期
关键词
Sobolev type equations; quasi-Banach spaces; propagators; phase space;
D O I
10.14529/mmp150112
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The theory of Sobolev type equations experiences an epoch of blossoming. In this article the theory of higher order Sobolev type equations with relatively spectrally bounded operator pencils, previously developed in Banach spaces, is transferred to quasi-Banach spaces. We use already well proved for solving Sobolev type equations phase space method, consisting in reduction of singular equation to regular one defined on some subspace of initial space. The propagators and the phase space of complete higher order Sobolev type equations are constructed. Abstract results are illustrated by specific examples. The Boussinesq-Love equation in quasi-Banach space is considered as application.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 11 条
[1]  
Berg J., 1976, HIST SEXUALITY
[2]  
Love AEH., 1927, TREATISE MATH THEORY
[3]   Optimal control of the solutions of the initial-finish problem for the linear Hoff model [J].
Manakova, N. A. ;
Dyl'kov, A. G. .
MATHEMATICAL NOTES, 2013, 94 (1-2) :220-230
[4]  
Sagadeeva M. A., 2012, DICHOTOMY SOLUTIONS
[5]   Numerical solution of the optimal measurement problem [J].
Shestakov, A. L. ;
Keller, A. V. ;
Nazarova, E. I. .
AUTOMATION AND REMOTE CONTROL, 2012, 73 (01) :97-104
[6]  
Showalter R.E., 1975, APPL ANAL, V5, P15
[7]  
Sviridyuk G.A., 2003, LINEAR SOBOLEV TYPE, DOI [10.1515/9783110915501, DOI 10.1515/9783110915501]
[8]  
Sviridyuk G.A., 1997, RUSS MATH, V41, P57
[9]  
SVIRIDYUK GA, 2013, MAT ZAMETKI, V20, P180
[10]   Optimal Control of Solutions of the Showalter-Sidorov-Dirichlet Problem for the Boussinesq-Love Equation [J].
Zamyshlyaeva, A. A. ;
Tsyplenkova, O. N. .
DIFFERENTIAL EQUATIONS, 2013, 49 (11) :1356-1365