INTERMOLECULAR DISINTEGRATION AND INTRAMOLECULAR STRAND TRANSFER ACTIVITIES OF WILD-TYPE AND MUTANT HIV-1 INTEGRASE

被引:44
作者
MAZUMDER, A
ENGELMAN, A
CRAIGIE, R
FESEN, M
POMMIER, Y
机构
[1] NCI,DIV CANC TREATMENT,MOLEC PHARMACOL LAB,DEV THERAPEUT PROGRAM,ROCKVILLE,MD 20892
[2] NIDDK,MOLEC BIOL LAB,ROCKVILLE,MD 20892
关键词
D O I
10.1093/nar/22.6.1037
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We report the activities of HIV integrase protein on a novel DNA substrate, consisting of a pair of gapped duplex molecules. Integrase catalyzed an intermolecular disintegration reaction that requires positioning of a pair of the gapped duplexes in a configuration that resembles the integration intermediate. However, the major reaction resulted from an intramolecular reaction involving a single gapped duplex, giving rise to a hairpin. Surprisingly, a deletion mutant of integrase that lacks both the amino and carboxyl terminal regions still catalyzed the intermolecular disintegration reaction, but supported only a very low level of the intramolecular reaction. The central core region of integrase is therefore sufficient to both bind the gapped duplex DNA and juxtapose a pair of such molecules through protein-protein interactions. We suggest that the branched DNA structures of the previously reported disintegration substrate, and the intermolecular disintegration substrate described here, assist in stabilizing protein-protein interactions that otherwise require the amino and carboxyl terminal regions of integrase.
引用
收藏
页码:1037 / 1043
页数:7
相关论文
共 29 条
[1]   RETROVIRAL DNA INTEGRATION DIRECTED BY HIV INTEGRATION PROTEIN INVITRO [J].
BUSHMAN, FD ;
FUJIWARA, T ;
CRAIGIE, R .
SCIENCE, 1990, 249 (4976) :1555-1558
[2]   DOMAINS OF THE INTEGRASE PROTEIN OF HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 RESPONSIBLE FOR POLYNUCLEOTIDYL TRANSFER AND ZINC-BINDING [J].
BUSHMAN, FD ;
ENGELMAN, A ;
PALMER, I ;
WINGFIELD, P ;
CRAIGIE, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (08) :3428-3432
[4]   REVERSAL OF INTEGRATION AND DNA SPLICING MEDIATED BY INTEGRASE OF HUMAN-IMMUNODEFICIENCY-VIRUS [J].
CHOW, SA ;
VINCENT, KA ;
ELLISON, V ;
BROWN, PO .
SCIENCE, 1992, 255 (5045) :723-726
[5]   THE IN PROTEIN OF MOLONEY MURINE LEUKEMIA-VIRUS PROCESSES THE VIRAL-DNA ENDS AND ACCOMPLISHES THEIR INTEGRATION INVITRO [J].
CRAIGIE, R ;
FUJIWARA, T ;
BUSHMAN, F .
CELL, 1990, 62 (04) :829-837
[6]   IDENTIFICATION OF DISCRETE FUNCTIONAL DOMAINS OF HIV-1 INTEGRASE AND THEIR ORGANIZATION WITHIN AN ACTIVE MULTIMERIC COMPLEX [J].
ENGELMAN, A ;
BUSHMAN, FD ;
CRAIGIE, R .
EMBO JOURNAL, 1993, 12 (08) :3269-3275
[7]   IDENTIFICATION OF CONSERVED AMINO-ACID-RESIDUES CRITICAL FOR HUMAN-IMMUNODEFICIENCY-VIRUS TYPE-1 INTEGRASE FUNCTION-INVITRO [J].
ENGELMAN, A ;
CRAIGIE, R .
JOURNAL OF VIROLOGY, 1992, 66 (11) :6361-6369
[8]   HIV-1 DNA INTEGRATION - MECHANISM OF VIRAL-DNA CLEAVAGE AND DNA STRAND TRANSFER [J].
ENGELMAN, A ;
MIZUUCHI, K ;
CRAIGIE, R .
CELL, 1991, 67 (06) :1211-1221
[9]   INHIBITORS OF HUMAN-IMMUNODEFICIENCY-VIRUS INTEGRASE [J].
FESEN, MR ;
KOHN, KW ;
LETEURTRE, F ;
POMMIER, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (06) :2399-2403
[10]  
GOFF SP, 1992, ANNU REV GENET, V26, P527, DOI 10.1146/annurev.ge.26.120192.002523