Multivariate Analysis in Metabolomics

被引:1097
作者
Worley, Bradley [1 ]
Powers, Robert [1 ]
机构
[1] Univ Nebraska, Dept Chem, 722 Hamilton Hall, Lincoln, NE 68588 USA
关键词
Multivariate analysis; metabolomics; metabonomics; OPLS-DA; PCA; PLS-DA;
D O I
10.2174/2213235X11301010092
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Metabolomics aims to provide a global snapshot of all small-molecule metabolites in cells and biological fluids, free of observational biases inherent to more focused studies of metabolism. However, the staggeringly high information content of such global analyses introduces a challenge of its own; efficiently forming biologically relevant conclusions from any given metabolomics dataset indeed requires specialized forms of data analysis. One approach to finding meaning in metabolomics datasets involves multivariate analysis (MVA) methods such as principal component analysis (PCA) and partial least squares projection to latent structures (PLS), where spectral features contributing most to variation or separation are identified for further analysis. However, as with any mathematical treatment, these methods are not a panacea; this review discusses the use of multivariate analysis for metabolomics, as well as common pitfalls and misconceptions.
引用
收藏
页码:92 / 107
页数:16
相关论文
共 131 条
[1]   Metabolomics analysis II. Preparation of biological samples prior to detection [J].
Alvarez-Sanchez, B. ;
Priego-Capote, F. ;
Luque de Castro, M. D. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2010, 29 (02) :120-127
[2]   Metabolomics analysis I. Selection of biological samples and practical aspects preceding sample preparation [J].
Alvarez-Sanchez, B. ;
Priego-Capote, F. ;
Luque de Castro, M. D. .
TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2010, 29 (02) :111-119
[3]   Gaussian binning: a new kernel-based method for processing NMR spectroscopic data for metabolomics [J].
Anderson, Paul E. ;
Reo, Nicholas V. ;
DelRaso, Nicholas J. ;
Doom, Travis E. ;
Raymer, Michael L. .
METABOLOMICS, 2008, 4 (03) :261-272
[4]   Dynamic adaptive binning: an improved quantification technique for NMR spectroscopic data [J].
Anderson, Paul E. ;
Mahle, Deirdre A. ;
Doom, Travis E. ;
Reo, Nicholas V. ;
DelRaso, Nicholas J. ;
Raymer, Michael L. .
METABOLOMICS, 2011, 7 (02) :179-190
[5]   Reducing over-optimism in variable selection by cross-model validation [J].
Anderssen, Endre ;
Dyrstad, Knut ;
Westad, Frank ;
Martens, Harald .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2006, 84 (1-2) :69-74
[6]   Overview of KEGG applications to omics-related research [J].
Aoki-Kinoshita, Kiyoko F. .
JOURNAL OF PESTICIDE SCIENCE, 2006, 31 (03) :296-299
[7]   Metabolomics: from small molecules to big ideas [J].
Baker, Monya .
NATURE METHODS, 2011, 8 (02) :117-121
[8]   Partial least squares for discrimination [J].
Barker, M ;
Rayens, W .
JOURNAL OF CHEMOMETRICS, 2003, 17 (03) :166-173
[9]   Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts [J].
Beckonert, Olaf ;
Keun, Hector C. ;
Ebbels, Timothy M. D. ;
Bundy, Jacob G. ;
Holmes, Elaine ;
Lindon, John C. ;
Nicholson, Jeremy K. .
NATURE PROTOCOLS, 2007, 2 (11) :2692-2703
[10]   Highly routinely reproducible alignment of 1H NMR spectral peaks of metabolites in huge sets of urines [J].
Beneduci, Amerigo ;
Chidichimo, Giuseppe ;
Dardo, Giuseppe ;
Pontoni, Gabriele .
ANALYTICA CHIMICA ACTA, 2011, 685 (02) :186-195